Исследование взаимосвязи системы шаровых скоплений Галактики и ее окружения

Аракелян Наира Рубеновна

защита диссертации на соискание ученой степени к.ф.-м.н.

Специальность 01.03.02 <<Астрофизика и звездная астрономия>>

Научный руководитель: канд. физ.-мат. наук Пилипенко Сергей Владимирович

Москва, АКЦ ФИАН, 15.09.2022

Обзор и цели работы

Целью данной работы является изучение взаимосвязи эволюции нашей Галактики с ее окружением с помощью самых старых объектов в Галактике, а именно шаровых скоплений (ШС). Для достижения поставленной цели были сформулированы и решены следующие основные задачи:

Глава 1: Измерение степени неоднородности распределения систем ШС и галактикспутников Млечного Пути с помощью метода, не включающего в себя предположений о дискообразном распределении этих систем. Создание случайных искусственных каталогов сравнения, позволяющих оценить вероятность того, что та или иная структура является случайным образованием.

Глава 2: Поиск ШС, предположительно связанных с приливным потоком Стрельца (Sgr stream). Разработка нового и оригинального метода поиска.

Глава 3: Проверка пространственной ориентации системы ШС, которые образовались как внутри, так и вне Галактического диска и заведомо аккрецировавших на нашу Галактику извне. Сопоставление ориентации систем ШС с диском Галактики, а также с плоскостью Местного Сверхскопления для выявления вероятного влияния Местного Сверхскопления на распределение ШС Млечного Пути.

Крупномасштабная ячеистая структура, которая образуется в соответствии с теорией Зельдовича

Carlesi et al. 2016

Глава I

Пространственное распределение шаровых скоплений в Галактике

Распределение ШС

XYZ - декартовы координаты относительно центра Галактики. Z совпадает с полюсом Галактики, а координаты Солнца (-8.34, 0, 0)

Распределение галактик спутников

Kroupa et al. (2005); Metz et al. (2008); Pawlowski et al. (2015)

Тензор гирации

$$S_{ij} = \frac{1}{N} \sum_{k=1}^{N} x_i^k x_j^k$$

Редуцированный тензор $J_{ij} = \frac{1}{N} \sum_{k=1}^{N} \frac{x_i^k x_j^k}{R_k^2}$

$$R_k^2 = x_k^2 + y_k^2 + z_k^2$$

Тензор инерции

$$\begin{split} I_{ij} &= \sum_{k=1}^{N} m_k \left(\delta_{ij} r_k^2 - x_i^k x_j^k \right) \\ \delta_{ij} &= \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases} \end{split}$$

Анизотропия для 27 галактик спутников

Верхний ряд для тензора гирации(S) Нижний ряд для редуцированного тензора (J) a,b, c – величины собственных осей (a> b> c)

Анизотропия для ШС

 $N (> \pm 3\sigma) = 54$

Распределение галактик спутников в системе координат, заданной собственными векторами тензора гирации, с добавлением 6 самых отдаленных ШС

Карта неба с распределением ШС в галактических координатах. Вид из центра Галактики.

Круг - наименьшая ось тензора; Треугольник - средняя ось тензора; Квадрат - наибольшая ось тензора

ШС: |b|<5° 16 ШС, для случайных - 13,7 ± 3,5 |b|<10° 39 ШС, для случайных - 27,3 ± 4,8 Г-С: |b|<5° и |b|<10° 1 спутник, для случайных - 2.4± 1.5 и 4.7± 2

Анизотропия для ШС в балдже/диске (BD)

ШС в BD (37 ШС) лежат на расстоянии от центра Галактики примерно от 0.8 до 17.5 кпк (8 ШС расположены на расстоянии > 5 кпк).

Анизотропия для ШС в старом гало (ОН)

ШС в ОН (70 ШС) лежат на расстоянии от центра Галактики примерно от 0.5 до 90.2 кпк (20 ШС расположены на расстоянии > 8 кпк). 70-90° и R<3 - 16 измерений малой оси с вероятностью 0.032 0-20° и R>6 - 15 измерений малой оси с вероятностью 0.004 0-20° и 6<R<20 - 15 измерений малой оси с вероятностью 0.001

Анизотропия для ШС в молодом гало (YH)

ШС в YH (30 ШС) лежат на расстоянии от центра Галактики примерно от 1.4 до 125 кпк.

Выводы главы І

- Для ШС полная выборка показывает значительную анизотропию только в диапазоне расстояний 2<R<10 кпк. Структура имеет удлиненную форму с с/а≈0.5 и b/a≈0.6, с большой осью, лежащей в галактической плоскости. Мы считаем, что эта структура связана с галактическим диском.
- Пространственное распределение 6 самых отдаленных ШС показывает совпадение с известной плоской структурой в распределении галактик спутников. Вероятность случайной реализации такого распределения составляет 1.7%.
- Влияние зоны избегания на распределения ШС и галактик спутников на низкой галактической широте незначительное.
- ВD ШС показывают изотропное распределение при R<2 и дискообразную структуру при R>3 с с/а≈0.3 и b/а≈0.6 компланарную с галактическим диском. ОН ШС на R<3 кпк, показывают сигараподобную структуру, перпендикулярную к галактической плоскости с с/а≈0.3 и b/а≈0.7. При R>6 кпк он трансформируется в почти изотропное распределение. ҮН ШС не показывают явной анизотропии.

Глава II

Шаровые скопления, потерянные сфероидальной карликовой галактикой в Стрельце

Параметры для карликовой сфероидальной галактики в Стрельце в LM10a

$(l,b)=(5^{\circ}.6, -14^{\circ}.2)$

Расстояние от Солнца 28 кпк Орбита спутника в момент наблюдения характеризуется направлением полюса $(lp,bp) = (273^{\circ}.8, -14^{\circ}.5)$ Лучевой скоростью 171 км/с Трехмерная скорость галактики в Стрельце (Vx,Vy,Vz) = (230, -35, 195) км/с Macca $2.5^{+1.3}_{-1.0} \times 10^8 M_{\odot}$

LM10a – Law and Majewski (2010a)

Приливной поток Sgr в трех проекциях

Серыми точками представлен модель потока Sgr (LM10a), звездочками показаны звезды в ведущем рукаве потока, а треугольниками показаны звезды в ведомом рукаве (наблюдаемые данные). XYZ – Декартовы координаты относительно центра Галактики.

Лучевые скорости в зависимости от Галактоцентрического расстояния

Наблюдаемые скорости звезд из ведущего (звездочки) и ведомого рукава (треугольники). Модели LM10a приливного потока Sgr (серые точки). Красные кружки – ШС, с большой вероятностью принадлежащие потоку (0 ШС в ведущем рукаве, 5 ШС в ведомом рукаве и еще 1 ШС, которое показано на обеих панелях (a, b) – NGC6715, которое находится в центре Sgr dSph). Желтые точки – кандидаты в шаровые скопления – члены потока Sgr (5 ШСв ведущем и 1 в ведомом рукаве). Черными точками показаны остальные 5 ШС.

Vgsr = Vlsr + 220 sin(l) cos(b) км/с, где Vlsr – скорость в локальном стандарте покоя.

Вероятности принадлежности ШС потоку Sgr

	Название	Вероятность	V_{gsr}	$\langle \mathrm{V}^*_{gsr} angle$	$\langle \mathrm{V}^{**}_{gsr} angle$	Рукав	Тип
			$(\mathrm{km}\ \mathrm{c}^{-1})$	$({\rm km} {\rm ~c}^{-1})$	$({\rm km} {\rm ~c}^{-1})$		
	NGC 6864 (M75)	0.013	-189.08	$129.40{\pm}377.31$	147.12 ± 99.31	Ведомый	OH
	NGC 5466	0.016	106.93	$-32.85 \pm\! 102.40$	$-53.47 \pm \! 189.40$	Ведущий	YH
\longrightarrow	NGC 288	0.019	-44.83	$154.59 {\pm} 260.99$	$-34.31 \pm\! 167.99$	Ведомый	OH
\longrightarrow	NGC 5272 (M3)	0.036	-147.28	-72.07 ± 213.21	$-36.70 \pm\! 135.21$	Ведущий	YH
\longrightarrow	NGC 5053	0.048	42.77	$-35.98 \pm\! 274.16$	$-51.16 \pm \! 193.16$	Ведущий	YH
	NGC 5897	0.052	101.31	$-264.20 \pm \! 126.87$	$53.56{\pm}132.87$	Ведущий	OH
\longrightarrow	NGC 5024 (M53)	0.060	-62.85	-4.01 ± 102.88	$-63.52 \pm\! 210.88$	Ведуший	OH
	NGC 7492	0.071	-176.70	$156.99{\pm}264.21$	$-5.92 \pm\! 115.21$	Ведомый	OH
\longrightarrow	Pal 12	0.076	27.91	$104.26{\pm}110.60$	$69.52{\pm}116.60$	Ведомый	SG
\longrightarrow	NGC 5904 (M5)	0.079	53.70	-189.19 ± 471.07	$25.57{\pm}207.07$	Ведущий	OH
\longrightarrow	Pal 5	0.083	-58.60	$-124.22 \pm\! 159.52$	$74.13{\pm}174.52$	Ведущий	YH
\longrightarrow	Terzan 7	0.092	159.45	$183.57{\pm}172.53$	151.15 ± 94.53	Ведомый	SG
	NGC 4147	0.100	179.52	51.25 ± 89.13	$-91.64 \pm\! 149.13$	Ведущий	SG
\longrightarrow	NGC 6715 (M54)	0.144	143.06	$187.46 {\pm} 91.94$			SG
\longrightarrow	Arp 2	0.252	123.01	$169.73 {\pm} 93.48$	$146.45 {\pm} 87.48$	Ведомый	SG
\longrightarrow	Whiting 1	0.275	-130.41	$-114.02\pm\!118.97$	-106.11 ± 139.97	Ведомый	UN
\longrightarrow	Terzan 8	0.586	148.53	$164.84{\pm}87.39$	$146.45 {\pm} 84.39$	Ведомый	SG

	Название	V_x	V_y	V_z	$\langle \mathbf{V}_x \rangle$	$\langle \mathbf{V}_y \rangle$	$\langle \mathbf{V}_z \rangle$
					$3\sigma_x$	$3\sigma_y$	$3\sigma_z$
		$(\mathrm{km}\ \mathrm{c}^{-1})$	$(\mathrm{km} \ \mathrm{c}^{-1})$	$(\mathrm{km}\ \mathrm{c}^{-1})$	$(\mathrm{km}\ \mathrm{c}^{-1})$	$({\rm km} {\rm ~c}^{-1})$	$(\mathrm{km}\ \mathrm{c}^{-1})$
	NGC 6864	66.92	-83.26	49.40	-202.82	39.98	108.39
					478.13	113.00	221.00
	NGC 5466	235.28	-50.46	232.32	341.41	10.72	62.21
					78.38	137.24	95.24
	NGC 288	9.89	-80.69	50.55	-232.32	80.45	-176.78
					291.17	74.39	207.83
	NGC 5272	-60.46	135.49	-134.57	336.64	-76.25	-12.86
					108.89	258.14	204.53
	NGC 5053	-52.38	148.20	35.11	333.11	-12.02	22.92
					68.72	90.50	281.93
	NGC 5897	34.13	-133.63	88.40	378.21	-77.91	36.30
					99.05	142.43	160.49
	NGC 5024	-58.06	158.52	-71.86	334.13	-8.40	49.14
					68.24	80.15	82.31
	NGC 7492	-5.14	-95.43	63.68	-239.03	62.02	-74.85
					135.29	171.92	257.15
\longrightarrow	Pal 12	-339.19	12.40	116.00	-328.84	-30.82	105.78
					77.72	87.35	95.45
	NGC 5904	-304.75	86.82	-183.79	284.51	-23.71	-7.75
					784.37	384.20	135.14
	Pal 5	50.24	-170.32	-8.79	303.09	-19.26	117.33
					94.01	124.97	231.80
\longrightarrow	Terzan 7	-260.69	-5.65	182.9	-266.06	16.76	175.38
					183.56	210.95	191.66
	NGC 4147	40.98	-10.08	130.87	319.89	-34.38	30.07
					75.53	106.73	94.40
\longrightarrow	NGC 6715	-229.62	3.26	189.18	-247.83	-28.67	205.01
					84.02	87.77	81.35
\longrightarrow	Arp 2	-251.65	-20.12	180.69	-253.95	-31.41	173.64
					91.07	82.49	78.89
\rightarrow	Whiting 1	-210.54	36.01	12.03	-254.12	7.99	-5.52
				101	103.82	110.99	99.65
\longrightarrow	Terzan 8	-271.58	-1.88	161.22	-265.75	-28.79	176.13
					81.59	79.37	82.73

Пространственные скорости (*Vx,Vy,Vz*) для 17 ШС (Baumgardt et al. 2019) в потоке и средние пространственные скорости для ближайших 6 звезд в модельном потоке, где ось *X* направлена от центра Галактики к Солнцу, *Y* совпадает с направлением вращения Галактики в солнечной позиции и *Z* указывает на северный Галактический полюс. Категория А: 6 скоплений, которые по кинематике принадлежат потоку - Pal 12; Terzan 7; NGC 6715; Arp 2; Whiting 1 и Terzan 8

Категория Б: 6 скоплений, для которых наблюдается расхождение по собственным движениям - NGC 288; NGC 5272; NGC 5053; NGC 5024; NGC 5904 и Pal 5

Категория В: 5 скоплений, которые не принадлежат потоку по кинематике - NGC 6864; NGC 5466; NGC 5897; NGC 7492 и NGC 4147

Зависимость "возраст – металличность"

Серые точки - модель LM10a. Красные точки - 6 ШС из категории А, желтые точки - 6 скоплений категории Б. Черные точки (5 ШС) - скопления категории В. Пустые черные круги — это оставшиеся ШС Галактики.

Выводы главы II

Из 157 ШС 17 с большой вероятностью связаны с карликовой сфероидальной галактикой в Стрельце. Эти 17 ШС делятся на 3 категории:

- А: несомненно в потоке, 6 ШС: Terzan 8; Whiting 1; Arp 2; NGC 6715; Terzan 7 и Pal 12. Выбранные скопления совпадают по всем параметрам: по пространственным положениям, по положению на зависимости "возраст – металличность", по лучевым и пространственным скоростям.
- Б: кинематические выбросы, 6 ШС: Pal 5; NGC 5904; NGC 5024; NGC 5053; NGC 5272 и NGC 288. Это шаровые скопления, которые совпадают по пространственному положению, по положению на зависимости "возраст металличность", но отличаются по пространственным скоростям.
- В: кандидаты низшего ранга, 5 ШС: NGC 6864; NGC 5466; NGC 5897; NGC 7492; и NGC 4147. Эти скопления совпадают по положению на зависимости "возраст – металличность", и вероятности пространственного нахождения в потоке велики, но они расходятся по лучевым и пространственным скоростям.

Глава III

Шаровые скопления как индикаторы эволюции Галактики

Процент ШС, образовавшихся ex situ, а затем аккрецировавших: Forbes et al. (2020) – 54 % ШС (87 скоплений из 160) Kruijssen et al. (2019) - 43 % Massari et al. (2019) – 60 %

Количество ШС, принадлежащих разным потокам:

Forbes– 87 ШС (Forbes et al. (2020)) на расстоянии от 1.42 до 144.77 кпк от центра Галактики	Massari — 89 ШС (Massari et al. (2019)) от 1.42 до 144.77 кпк	Myeong — 34 ШС (Myeong et al.(2019)) от 2.42 до 71.36 кпк
6 - (Sgr dSph); 28 - карликовой галактике Gaia-Enceladus; 9 - карликовой галактике Sequoia; 21- низкоэнергетическому спутнику Koala; 9 - маломассивному спутнику – Helmi streams; 11 -объединены в отдельную группу - High energy group	8 - (Sgr dSph); 26 (+6 кандидатов) - Gaia- Enceladus; 10 - Helmi streams; 7 - Sequoia; 25 - Low energy; 11 - High energy	6 - (Sgr dSph); 21 - Gaia Sausage; 7 - Sequoia

Основной список приливных потоков, из которых аккрецировала значительная часть ШС:

- 1) Карликовая сфероидальная галактика Стрельца (Sgr dSph) с ядром NGC 6715 (M54).
- 2) Галактика Секвоя (Sequoia) с ядром NGC 5139 (ω Cen).
- 3) Поток Хелми (Н99).
- 4) Гайя-Энцелад (Gaia-Enceladus) с ядром NGC 1851. Другие возможные вариации (названия) этого потока: Колбаса Гайи (Gaia Sausage) или Большой Пес (CMa).
- 5) Низкоэнергетический прародитель Коала, которому может быть эквивалентен Kraken, а так же низкоэнергетичная группа(Low energy) (E<-1.86x10⁵ км² с⁻²).
- 6) Высокоэнергетичная группа (High energy)(E>-1.5x10⁵ км² с⁻²).

Анизотропия для выборок ШС по Forbes, Massari и Myeong

На расстоянии от 3.5 до 20 кпк под углом более 70°, с n=0, вероятность получить распределение, подобное правому столбцу равна 4.5, 0.6 и 1.1% для выборок Forbes, Massari и Myeong соответственно. Чтобы вероятность превысила 10%, в диске должно находиться n=6, 16 и 8 ШС.

Возраст в зависимости от металличности ШС для выборок скоплений по Forbes, Massari и Myeong

- - скопления, образовавшиеся ex situ
- - скопления, образовавшиеся in situ.

Влияние местного сверхскопления на распределение ШС, а также карликовых галактикспутников Млечного Пути

"Угол" между плоскостью LSC и малой (зеленые треугольники) или большой (синие точки) осью распределения представлен как функция галактоцентрического расстояния для спутников Галактики и ШС.

Выводы главы III

- Измерения анизотропного распределения ШС, принадлежавших приливным потокам, с помощью тензора гирации показало, что для аккрецированных ШС не наблюдается статистически значимой анизотропии.
- С помощью случайных каталогов показано, что часть ШС из выборок Forbes, Massari и Myeong возникли в диске Галактики, и это хорошо согласуется с результатами других авторов, что часть ex-situ скоплений на самом деле генетически связана с нашей Галактикой.
- Зависимость "возраст—металличность" демонстрирует бимодельность, и две разные ветви явно показывают разницу между скоплениями, образовавшимися в потоках и в диске Галактики.
- Проверка вероятного влияния Местного Сверхскопления на распределение галактик-спутников и ШС Млечного Пути показало, что плоскость галактик-спутников перпендикулярна диску Галактики и сверхгалактической плоскости одновременно. Для ШС на расстояниях до 20 кпк прослеживается влияние только диска Галактики, на расстояниях около 30 кпк возможно совпадение ориентации системы ШС со сверхгалактической плоскостью, а на больших расстояниях (более 100 кпк) ориентация напоминает таковую для галактик-спутников.

Основные положения, выносимые на защиту:

1) Найдены следующие особенности распределения шаровых скоплений (ШС) Галактики. Система ШС показывает статистически значимую анизотропию только в диапазоне расстояний 2<R<10 кпк, и эта анизотропия связана с диском Галактики. Структура имеет удлиненную форму с отношением осей с/а≈0.5 и b/a≈0.6, с большой осью, лежащей в Галактической плоскости. Пространственное распределение шести самых отдаленных ШС показывает совпадение с известной плоской структурой в распределении галактик-спутников, которая может представлять собой остаток "блина Зельдовича", а шесть ШС в этом случае были аккрецированы вместе с галактиками-спутниками. Вероятность случайной реализации такого распределения составляет 1.7%. Влияние зоны избегания на распределения ШС и галактик-спутников на низкой Галактической широте несущественное. (Глава 1).

2) Из 157 известных на данный момент ШС 17 с большой вероятностью связаны с карликовой сфероидальной галактикой в Стрельце и образованным при ее частичном разрушении приливным потоком. Эти 17 ШС делятся на три категории на основании того, совпадают ли они со звездным потоком только по пространственным положениям и соотношению "возраст–металличность" (В), также по лучевым скоростям (Б) или также по лучевым и пространственным скоростям (А) :

A: несомненно в потоке, шесть ШС: *Terzan* 8; *Whiting* 1; *Arp* 2; *NGC* 6715; *Terzan* 7 и *Pal* 12.

Б: кинематические выбросы, шесть ШС: *Pal* 5; *NGC* 5904; *NGC* 5024; *NGC* 5053; *NGC* 5272 и *NGC* 288.

В: кандидаты низшего ранга, пять ШС: *NGC* 6864; *NGC* 5466; *NGC* 5897; *NGC* 7492 и *NGC* 4147. (Глава 2).

3) Для ШС, принадлежащих известным на сегодня приливным потокам, образовавшимся при разрушении аккрецированных на Галактику спутников, не наблюдается статистически значимой анизотропии. Вместе с тем, пространственная ориентация распределения аккрецированных ШС свидетельствует о том, что около 10% ШС ошибочно отнесены другими авторами к аккрецированным, на самом деле они генетически связаны с Галактикой. (Глава 3).

4) Плоскость галактик-спутников перпендикулярна диску Галактики и сверхгалактической плоскости одновременно. Для ШС на расстояниях до 20 кпк прослеживается влияние только диска Галактики, на расстояниях около 30 кпк возможно совпадение ориентации системы ШС со сверхгалактической плоскостью, а на больших расстояниях (более 100 кпк) ориентация напоминает таковую для галактик-спутников. (Глава 3).

Заключение

Список работ, опубликованных по теме диссертации в журналах, рекомендованных ВАК:

[A1] Arakelyan N. R., S. Pilipenko V., Libeskind N. I. Spatial distribution of globular clusters in the Galaxy // Monthly Notices of the Royal Astronomical Society - 2018, Vol. 481, Issue 1, p. 918-929.

[A2] Аракелян Н. Р. Влияние Галактического диска и галактик-спутников на пространственное распределение шаровых скоплений // Краткие Сообщения по физике ФИАН - 2019, № 3, С. 12-16 (Англоязычная версия: Arakelyan N. R. Effect of the Galactic disk and satellite galaxies on the spatial distribution of globular clusters // Bulletin of the Lebedev Physics Institute - 2019, Vol. 46, p. 86-88.)

[А3] Аракелян Н. Р., Пилипенко С. В., Шарина М. Е. Шаровые скопления, потерянные сфероидальной карликовой галактикой в Стрельце // Астрофизический Бюллетень - 2020, Т. 75, № 4, С. 444-458 (Англоязычная версия: Arakelyan N. R., S. Pilipenko V., Sharina M. E. Globular clusters lost by the Sagittarius dwarf spheroidal galaxy // Astrophysical Bulletin - 2020, Vol. 75, Issue 4, p. 394-406.)

[A4] Аракелян Н. Р., Пилипенко С. В. Шаровые скопления как индикаторы эволюции Галактики // Астрономический журнал - 2022, Т. 99, № 3, С. 179-188 (Англоязычная версия: Arakelyan N. R., S. Pilipenko V. Globular cluster as indicators of Galactic evolution // Astronomy Reports – 2022, Vol. 66, № 3, р. 191-199.)

В других изданиях:

[В1] Аракелян Н. Р., Пилипенко С. В., Шарина М. Е. Пространственное распределение шаровых скоплений в Галактике // Известия Крымской Астрофизической Обсерватории - 2018, Т. 114, № 1, С. 171-173.

Апробация работы

Результаты диссертации докладывались и обсуждались на семинарах отдела теоретической астрофизики Астрокосмического центра ФИАН (Москва, Россия), на конференциях и симпозиумах:

1) XXXIII Всероссийская конференция "Актуальные проблемы внегалактической астрономии", Пущино, Россия, 19-22 апреля 2016;

2) 59 Всероссийская научная конференция МФТИ с международным участием, Московская обл., г. Долгопрудный, Россия, 21-26 ноября 2016;

3) XXXIV Всероссийская конференция "Актуальные проблемы внегалактической астрономии", Пущино, Россия, 18-21 апреля 2017;

4) 2017 Annual CLUES Workshop, Constrained Local UniversE Simulations, Мирафлорес -де-ла-Сьерра, Мадрид, Испания, 18-23 июня 2017;

5) Всероссийская астрономическая конференция (ВАК-2017) «Астрономия: познание без границ», Ялта, Крым, 17-22 сентября 2017;

6) VII Молодежная конференция "Физика элементарных частиц и космология", ФИАН, Москва, Россия, 9-10 апреля 2018;

7) XXXV Всероссийская конференция "Актуальные проблемы внегалактической астрономии", Пущино, Россия, 24-27 апреля 2018;

8) Семинар отдела теоретической астрофизики АКЦ ФИАН, Москва, Россия, 27 сентября 2018;

9) Конференция "Астрономия - 2018", Девятая конференция из цикла "Современная звездная астрономия", ГАИШ МГУ, Москва, Россия, 22-26 октября 2018;

10) 10th Alexander Friedmann International Seminar on gravitation and cosmology; 4th Symposium on the Casimir Effect, Санкт-Петербург, Россия, 23-29 июня 2019;

11) BASIS Foundation Summer School 2019 "Evolution of galaxies and stars", Сочи, Россия, 15-27 июля 2019;

12) Международная конференция Diversity of the Local Universe, Нижний Архыз, Россия, 30 сентября - 04 октября 2019;

13) Семинар отдела теоретической астрофизики АКЦ ФИАН, Москва, Россия, 19 ноября 2020.

Спасибо за внимание!

Ответы на замечания: ведущей организации ГАИШ МГУ

2. Введение: фраза «...за галактикой образуется приливной хвост...» говорит о неверном представлении автора о влиянии приливного эффекта. (Это не оговорка, поскольку повторяется в п. 3.1.) Автору следует иметь в виду, что приливные выступы и потоки не похожи на хвосты комет.

Согласна, это калька с "tidal tail", используемая в некоторой англоязычной литературе.

3. Глава 1. Утверждение о малой роли межзвездного поглощения света выглядит неубедительным. Например, замеченная автором сигарообразная структура в распределении шаровых скоплений при R < 3 кпк, ориентированная большой осью перпендикулярно галактической плоскости, явно указывает на влияние поглощения света в плоскости Галактики, усложняющее обнаружение скоплений вблизи этой плоскости.

Влияние поглощения света, действительно, может оказаться важным для скоплений совсем вблизи диска, поэтому мы проводили анализ с искусственной «зоной избегания». Мы это делали для больших расстояний, и не нашли влияния зоны на наши результаты. На малых расстояниях мы не проверяли, но она вполне может повлиять.

4. Глава 2. В пункте 2.1. фраза «Из-за высоких скоростей движений возникают приливные хвосты…» свидетельствует о том, что автор недостаточно ясно понимает суть приливного эффекта, проявление которого, на самом деле, уменьшается с ростом скоростей.

Согласна, неправильно сформулированное предложение.

5. Глава 3. Исследуя распределение шаровых скоплений, отнесённых в приливным потокам, автор обнаруживает избыток скоплений, концентрирующихся к плоскости Галактики и заключает, что они не могут быть связаны с распадом галактикспутников. При этом, однако, не обсуждается эффект динамического трения, под действием которого околополярные орбитальные плоскости скоплений приближаются к экваториальной плоскости Галактики. Без обсуждения этого эффекта сделанный в работе вывод становится менее надёжным.

Эффект динамического трения, действительно, важен для скоплений, пролетающих сравнительно близко от центра Галактики. Это тема, заслуживающая отдельного исследования. Так, недавно вышла работа Морено и др. 2021, где были посчитаны орбиты ШС с R<10 кпк и |z|<5 кпк с учетом динамического трения, и найдено, что по крайней мере для 5 скоплений (Liller 1, Terzan 4, Terzan 5, NGC 6440 и NGC 6553) трение сильно изменило орбиту. В том числе трение способно изменить полную энергию и угловой момент орбитального движения ШС, которые принимались постоянными в работах Массари, Мейонга и Форбса при составлении каталогов ШС, аккрецированных нашей Галактикой, могут поменяться и некоторые выводы этих работ. Для более точного ответа на вопрос о влиянии трения на конкретные скопления нужны более точные данные о поле дисперсии скоростей разных компонент Галактики на разных расстояниях от центра. Мы постараемся учесть результаты этой и других работ по динамическому трению в нашей дальнейшей работе.

9. На рис. 2.6а соискатель привела относительные содержания титана в скоплениях, собранных из разных источников. Такая процедура не вполне корректна, поскольку разные авторы исследуют разное количество звёзд в скоплениях, используют разные модели атмосфер, разные солнечные содержания химических элементов и т.д., поэтому определения разных авторов могут значительно отличаться друг от друга и следует все обилия по возможности сводить в единую шкалу.

Согласна, следует отметить, что это результат соавтора.

- 10.К сожалению, в выбранной соискателем несколько устаревшей модели потока от карликовой галактики Sgr её начальная масса всего 6х10⁸ M_O. Тогда как более позднее моделирование кинематики приливного хвоста звёзд галактики Sgr в работе (Gibbons et al. 2017) показало, что для того чтобы воспроизвести дисперсию скоростей в потоке от этой галактики, масса ее тёмного гало должна быть на два порядка больше. Такое расхождение могло привести к потере некоторых кандидатов, например, обсуждаемого в диссертации скопления NGC 2419.
 - Согласна, но результаты выбранной нами модели есть в открытом доступе, чего нету у модели Gibbons et al. 2017, кроме этого, этой задачей мы начали заниматься еще до выхода указанной стати.

Ответы на замечания: оппонента Никифорова И.И.

2. Рассматривая влияние на результаты зоны избегания, связанной с поглощением света в диске Галактики, автор не учитывает две другие зоны избегания: 1) зацентральной и 2) осевой. Первая из этих зон обусловлена экранированием галактическим баром (точнее пылью, с ним связанной) ШС в дальней по отношению к Солнцу части бара и за баром (Nikiforov I.I., Smirnova O.V. // Astronomische Nachrichten. 2013. V. 334. N. 8. P. 749–755, figs. 5, 6; Schultheis M. et al. // Astron. and Astrophys. 2014. V. 566. A120, fig. 8). Эта зона хорошо заметна и на рис. 1.11 диссертации — на распределении ШС в галактоцентрических координатах в полосе между долготами от -50° до 110° на низких широтах. Учет этой зоны избегания, приводящей из-за отсутствия ШС в области за центром Галактики к дополнительному дефициту ШС вдоль галактической плоскости, должен усилить «дископодобную» анизотропию распределения и, возможно, изменить ее пределы по R. Осевая зона избегания (ШС дефицитны в конусе/желобе с углом полураствора 15°) ориентирована вдоль оси вращения Галактики (Никифоров И.И., Агладзе Е.В. // Письма в Астрон. ж. 2017. Т. 43. № 2.С. 97-128) и сама по себе вполне может быть проявлением связи ШС с плоскостью галактик-спутников, особенно в варианте желоба.

Мы проверяли влияние зоны избегания для больших расстояний, потому и использовали искусственную «зону избегания» и не учитывали другие. Про две другие зоны, указанные оппонентом, мы не знали на момент написания статьи. Возможно, что проверка осевой и зацентральной зон избегания могла бы улучшить понимание связи ШС с плоскостью галактик-спутников, так что мы постараемся учесть ее в нашей дальнейшей работе. По осевой зоне: очень интересна проблема ее происхождения, было бы интересно заниматься этим.

Ответы на замечания: оппонента Никифорова И.И.

5. Отрадно, что (случайные) ошибки расстояний до ШС были учтены. Однако принятая величина ошибки — 5% от расстояния, т.е. 0^m.1, — представляется слишком оптимистичной. Только среднеквадратический разброс калибровочного соотношения в каталоге Harris (2010, astroph/1012.3224) уже составляет 1^m.1 (5.1%). А есть еще ошибки измерения зв. величины горизонтальной ветви, *V(HB)*, ошибки величины покраснения *E(B – V)*, вариации отношения общего поглощения к селективному, *A_V/E(B – V)*, и др. источники ошибок. В известном автору файле mwgc.ref с описанием каталога прямо сказано, что абсолютная величина *M_V(HB)* только в наилучших случаях составляет, вероятно, ±0^m.1. Таким образом, более реалистичной выглядит средняя ошибка ~0^m.2, или ≈10% от расстояния. Насколько бы изменились результаты работы при принятии такой величины ошибки?

Принятие величины ошибки 10% почти не меняет зависимость анизотропии от расстояния, и, соответственно, результаты работы тоже не меняются.

