

СТРУКТУРА МАГНИТОСФЕРЫ РАДИОПУЛЬСАРОВ ПО ДАННЫМ ОБ УГЛАХ

МЕЖДУ ИХ МАГНИТНЫМ МОМЕНТОМ И ОСЬЮ ВРАЩЕНИЯ

Никитина Елена Борисовна

Научный руководитель - д.ф.-м.н. И.Ф. Малов

1

Актуальность работы:

- Угол β позволяет понять специфику излучения конкретного пульсара, а распределение углов для объектов с разными возрастами – сделать выводы о путях их эволюции.
- Выявление источников с малыми значениями угла β и с углами порядка 90° даёт возможность предсказать наличие у них межимпульсного излучения и интеримпульсов.
- Вычисление углов на разных уровнях в магнитосфере по данным наблюдений на разных частотах может быть использовано для проверки гипотезы о дипольности магнитного поля.
- По полученным данным возможно оценить распределение уровней генерации соответствующего излучения, т.е. провести картографирование этих уровней.
- Анализ всех результатов по определению углов β в пульсарах служит одним из путей выбора адекватной модели для этих объектов и механизма их излучения.

Цель: вычисление углов между различными осями в радиопульсарах без интеримпульсов и с интеримпульсами несколькими методами, проверка, уточнение и корректировка этих методов с целью определения уровней генерации излучения на разных частотах, получение выводов о физических процессах в магнитосферах пульсаров и возможных путях эволюции этих объектов.

Новизна: В диссертации получен ряд новых результатов. Выведены уравнения для определения угла β при различной форме наблюдаемого профиля. Выявлено, что по наблюдаемым значениям ширины профиля W₁₀ и максимальной производной С позиционного угла поляризации в среднем профиле можно достаточно точно вычислить отношение радиуса конуса излучения к минимальному расстоянию до луча зрения от центра конуса. Подтверждено, что радиопульсары с интеримпульсами можно разделить на две подгруппы: ортогональные и соосные ротаторы. Показано, что пульсары с интеримпульсами и β ~ 90° в несколько раз моложе соосных пульсаров с интеримпульсами. Отличие полученной нами зависимости W(P) от обычно принимаемой в модели полярной шапки может быть объяснено темпом развития плазменных неустойчивостей вблизи поверхности нейтронной звезды (в области генерации высоких частот).

<u>Достоверность результатов:</u>

Представленные в работе результаты получены как с помощью существующих, так и с помощью новых методов, которые дают возможность уточнения полученных ранее значений углов, вычислить их средние величины и по ним сделать выводы о структуре магнитосферы пульсаров.

<u>Практическая значимость:</u>

В ходе выполнения работы были опробованы новые методы вычисления угла β, а также подкорректированы и уточнены уже существующие. Вычислены значения углов для нескольких сотен пульсаров. Подтверждено существовавшее ранее предположение о существовании двух типов пульсаров с интеримпульсами: ортогональных и соосных ротаторов. Выявлено, что ортогональные ротаторы систематически моложе соосных. Результаты проделанной работы могут послужить дальнейшему развитию теоретических представлений о пульсарах и лучшему пониманию их природы.

Публикации и личный вклад

Во всех результатах, вынесенных на защиту, вклад автора является существенным. Соискатель совместно с соавтором участвовал в постановке задач и формулировке выводов из проделанной работы, самостоятельно проводил вычисления углов и поиск полученных в работе зависимостей между различными параметрами.

Результаты вычислений, представленные в таблицах 1-4, 7, 8 и в таблицах Приложений, получены автором самостоятельно. Рисунки 4-7, 10, 12-15, 23, 25 выполнены также автором. Программа для вписывания модельной кривой в наблюдаемые значения позиционного угла линейной поляризации написана соискателем на языке программирования Python. Автором совместно с его научным руководителем предложен новый метод вычисления углов между осями в магнитосферах пульсаров на основе системы из трех уравнений. Результаты вычислений для таблиц 6, 9 – 12 и рисунки 8, 9, 16, 18 – 22 выполнены также совместно с соавтором. Рисунки 1 – 3 и 17 заимствованы из монографии [11], рисунок 11 из [34].

Подготовка к публикации полученных результатов проводилась совместно с научным руководителем.

Изложенные в диссертации результаты опубликованы в работах:

- E.B.Nikitina, I.F.Malov. Estimations of angles between some axes in radio pulsars from catalog at 1000 MHz // 17th Open Young Scientists' Conference in Astronomy and Space Physics, Kyiv, 2010, Abstracts, p. 25.
- 2) И.Ф.Малов, Е.Б.Никитина. Определение углов 80 радиопульсаров по данным наблюдений на частотах около 1 ГГц // Тезисы докладов XVI ВНКСФ, Волгоград, 2010 г., с. 379-380.
- И.Ф.Малов, Е.Б.Никитина. Определение углов у радиопульсаров из каталога на частотах около 1 ГГц // Тезисы ВАК-2010, с.99-100.
- 4) И.Ф.Малов, Е.Б.Никитина. Определение углов у 80 радиопульсаров из каталога на частотах около 1 ГГц.
 HEA-2010, с. 34-35, 21-24 декабря 2010 г., Москва.
- 5) И.Ф. Малов, Е.Б. Никитина. Углы между осью вращения и магнитным моментом в 80 радиопульсарах по данным наблюдений на частотах около 1 ГГц // Астрономический журнал, 2011, том 88, с. 22–33.
- И.Ф.Малов, Е.Б.Никитина. О геометрии магнитосферы радиопульсаров // Астрономический журнал, 2011, том 88, с.954-965.
- 7) E.B.Nikitina, I.F.Malov. Estimations of angles between some axes in radio pulsars from catalog at 1000 MHz // Advances in Astronomy and Space Physics. Kyiv, 2011, P. 9-12.
- 8) E.B.Nikitina. On the structure of pulsar magnetosphere. // 18th Open Young Scientists' Conf. on Astronomy and Space Physics. Kyiv, 2011, Abstracts, p.38.
- 9) E.B.Nikitina. On the structure of pulsar magnetosphere. // 41st Young European Radio Astronomers Conference (YERAC), Manchester, UK, 18-20 July, 2011.

- I.F.Malov, E.B.Nikitina. On the structure of pulsar magnetosphere // Physics of Neutron Stars 2011, St. Petersburg, 2011, July 11-15, p.91.
- 11) Малов И. Ф., Никитина Е. Б. Распределение областей генерации излучения на разных частотах в магнитосферах пульсаров // Астрономический журнал, 2012, том 89, с. 769–777.
- 12) И.Ф.Малов, Е.Б.Никитина. Распределение областей генерации излучения на разных частотах в магнитосферах пульсаров // Тезисы докладов конференции, НЕА-2011, Москва, с.59.
- I.F.Malov, E.B.Nikitina. On the structure of pulsar magnetospheres // Advances in Astron. Sp. Phys. 2012, V.2, P.28-30.
- 14) I.F.Malov, E.B.Nikitina. The distribution of areas of radiation generation at the different frequencies in the pulsar magnetospheres // Abstracts of the 19th Open Young Scientists Conf. Kyiv, Abstracts, P.44-45, 2012.
- 15) И.Ф.Малов, Е.Б.Никитина. Ориентация осей в пульсарах и распределение излучающих областей в их магнитосферах // Резюме докладов на конференции Астрономического общества, с.33, Москва, 2012.
- I.F.Malov, E.B.Nikitina. The distribution of areas of radiation generation at different frequencies in the pulsar magnetospheres // Advances in Astron. Sp. Phys. 2012, V.2, P.125-127
- 17) И.Ф.Малов, Е.Б.Никитина. Бимодальность радиопульсаров с интеримпульсами // Тезисы докладов конференции HEA-2012, M, C.54-55.
- 18) И.Ф.Малов, Е.Б.Никитина. Структура магнитосфер в радиопульсарах с нтеримпульсами // Астрономический журнал, 2013, том 90, № 11, с.907-918.
- 19) И.Ф. Малов, Е.Б. Никитина. Структура магнитосфер в радиопульсарах с интеримпульсами // Тезисы ВАК-2013, С.-П., 2013, с. 176.
 7

Апробация работы:

Результаты, полученные в диссертации, докладывались на ежегодных научных сессиях АКЦ ФИАН, а также на следующих российских и международных конференциях:

- 1) 17th Young Scientists Conference on Astronomy and Space Physics (Kyiv, 2010);
- 2) 17-я Всероссийская конференция студентов-физиков и молодых ученых России (Волгоград, 2010);
- Всероссийская астрономическая конференция (ВАК-2010) (Специальная астрофизическая обсерватория (САО) Российской академии наук, пос.Нижний Архыз, 2010);
- 4) Всероссийская конференция «Астрофизика высоких энергий сегодня и завтра» (Москва, 2010);
- 5) 18th Young Scientists Conference on Astronomy and Space Physics (Kyiv, 2011);
- 6) 41stYoung European Radio Astronomers Conference (YERAC) (Manchester, UK, 18-20 July, 2011);
- 7) International Conference «Physics of Neutron Stars 2011» (July 11-15, 2011, St. Petersburg, Russia);
- 8) Всероссийская конференция «Астрофизика высоких энергий сегодня и завтра» (Москва, 2011);
- 9) 18-я Всероссийская конференция студентов-физиков и молодых ученых России (Красноярск, 2012);
- 10) 19th Young Scientists Conference on Astronomy and Space Physics (Kyiv, 2012);
- 11) XI отчетно-перевыборный съезд Международной общественной организации "Астрономическое Общество" и научная конференция "Астрономия в эпоху информационного взрыва: результаты и проблемы" (Москва, 2012)
- 12) Всероссийская конференция «Астрофизика высоких энергий сегодня и завтра» (Москва, 2012);
- 13) Всероссийская астрономическая конференция (ВАК-2013) (Санкт-Петербург, 2013).
- 14) International Conference «Physics of Neutron Stars 2014» (July 28 August 1, 2014, St. Petersburg, Russia);
- 15) 44stYoung European Radio Astronomers Conference (YERAC) (Torun, Poland, 8-12 September, 2014).

Структура и объем диссертации

Диссертация состоит из введения, основной части, содержащей четыре главы, и заключения, а также двух приложений. В диссертации 124 страницы, включая 25 рисунков и 14 таблиц. Список литературы содержит 81 ссылку.

Модель полого конуса

- и −вектор магнитного момента
- Ω ось вращения пульсара
- ∧ L луч зрения наблюдателя
- *∧* ζ угол между лучом зрения и осью вращения
- β угол между направлением вектора магнитного момента (осью конуса излучения) и осью вращения пульсара
- *№* θ раскрыв конуса открытых силовых линий

T.D. van Ommen et al. «Polarimetric observations of southern pulsars at 800 and 950 MHz», Mon. Not. Roy. Astron Soc., V.287, P.307, 1997, [1]

P.Weltevrede, S.Johnston. «Profile and polarization characteristics of energetic pulsars», Mon. Not. Roy. Astron. Soc. V.391, P. 1210, 2008 [2]

1 выборка – пульсары из [2], параметры которых измерены на длине волны 10 см (132);

2 выборка – пульсары из [2], параметры которых измерены на длине волны 20 см (283);

3 выборка – пульсары из [1], параметры которых измерены на длине волны порядка 30 см (80).

Первый способ вычисления углов β

Распределение углов В1

Рис. 4

Второй способ вычисления углов β

lg W₁₀ =
$$(1,12\pm0,05) + (-0,25\pm0,09)$$
 lg P для 1
lg W₁₀ = $(1,22\pm0,03) + (-0,24\pm0,05)$ lg P для 2 (5)
lg W₁₀ = $(1,16\pm0,03) + (-0,27\pm0,08)$ lg P для 3

$$tg\psi = \frac{\sin\beta \cdot \sin\varphi}{\sin\zeta \cdot \cos\beta - \cos\zeta \cdot \sin\beta \cdot \cos\varphi} \quad (6) \qquad \qquad \left(\frac{d\psi}{d\varphi}\right)_{max} = \frac{\sin\beta}{\sin(\zeta - \beta)} \quad (7)$$

$$\left(\frac{d\psi}{d\varphi}\right)_{max} = C \quad (8) \qquad \cos\frac{W_{10}}{2} = D \quad (9) \qquad \cos\theta = B \quad (10)$$

$$C^{2}(1-D^{2})y^{4} + 2C(1-D)y^{3} + [1+2DC^{2}(1-D)]y^{2} +$$

$$+2C(D-B^{2})y + D^{2}C^{2} - B^{2}(1+C^{2}) = 0$$

$$y = \cos\zeta \quad (12) \qquad tg\beta = \frac{C\sqrt{1-y^{2}}}{1+Cy} \quad (13)$$

С может быть > 0 и < 0 в зависимости от знака фф

Средние значения углов В2

10 cm, C > 0:
$$<\beta_{2}> = 33,9^{\circ}$$
10 cm, C < 0: $<\beta_{2}> = 52,1^{\circ}$ 20 cm, C > 0: $<\beta_{2}> = 33,9^{\circ}$ 20 cm, C < 0: $<\beta_{2}> = 54,1^{\circ}$ 30 cm, C > 0: $<\beta_{2}> = 36,4^{\circ}$ 30 cm, C < 0: $<\beta_{2}> = 49,1^{\circ}$

Третий способ вычисления углов β

Уравнения при различных п

<u>n = 2</u>

$$2C^{3}(1-D)^{2}y^{5} + [C^{4}(1-D)^{2} + C^{2}(D^{2} - 6D + 5) - 4]y^{4} +$$

+2C[C²(1 + D - 2D²) - 2 - D]y³ + [2DC⁴(1 - D) - C²(2D² - 6D + 7) + 5]y² + (15)
+2C[C²D² + D(1 + C²) - 2(C² - 1)]y + C²D²(1 + C²) - (C² - 1)² = 0

<u>n = 3/2</u>

$$\left[2(y+C) - \sqrt{C^2 + 2Cy + 1}\right] \sqrt{\frac{1 + \frac{C+y}{\sqrt{C^2 + 2Cy + 1}}}{2}} - Cy^2(1-D) - y - CD = 0$$
(16)

17

n = 5/4

$$\left(1 + \frac{2(y+C)}{\sqrt{C^2 + 2Cy+1}} - \sqrt{2\left(1 + \frac{C+y}{\sqrt{C^2 + 2Cy+1}}\right)}\right)\sqrt{\frac{1 + \sqrt{\frac{1 + \frac{C+y}{\sqrt{C^2 + 2Cy+1}}}{2}}}{2}} - \frac{(17)}{\sqrt{\frac{C^2 + 2Cy+1}{\sqrt{C^2 + 2Cy+1}}}} = 0$$

n = 4

$$(CD + y + Cy^{2}(1 - D))\sqrt{(C^{2} + 2Cy + 1)^{3}} - 8y^{4} - 16Cy^{3} - (18)$$
$$-4(3C^{2} - 2)y^{2} - 4C(C^{2} - 3)y - C^{4} + 6C^{2} - 1 = 0$$

18

Распределение углов β₃

Рис. 7

Определение уровней генерации излучения

Для конкретного пульсара при дипольном магнитном поле величины ζ – β и β фиксированы и значение производной C на всех уровнях магнитосферы должно быть одинаковым.

$$n = \frac{\theta}{\zeta - \beta} \quad (19) \qquad \qquad \frac{\theta_{20}}{\theta_{10}} = \frac{n_{20}}{n_{10}} \quad (20) \qquad \qquad \theta \approx \sqrt{r/r_{LC}} \quad (21) \qquad \qquad \frac{r_{20}}{r_{10}} = \frac{n_{20}^2}{n_{10}^2} \quad (22)$$

$$lg \theta_{10} = (1,12\pm0,05) + (-0,25\pm0,09) lg P$$
для длины волны 10 см

$$lg \theta_{20} = (1,22\pm0,03) + (-0,24\pm0,05) lg P$$
для длины волны 20 см
(23)

$$<\theta_{20}/\theta_{10}>=1,26$$
 (24)

Из расчетов следует, что r_{20}/r_{10} может приближаться к 2. Для ряда пульсаров с точностью до ошибок $r_{20}/r_{10} = 1$. Однако эти объекты имеют достаточно короткие периоды и вполне возможно, что их излучение генерируется на всех частотах вблизи светового цилиндра с почти одинаковой шириной импульса на 20 и 10 см.

В случае произвольного наклона оси диполя к оси вращения (β ≠ 0) угловой размер конуса излучения может быть другим. Форма полярной шапки остаётся до сих пор предметом дискуссий.

Размеры конуса открытых силовых линий в случае произвольного наклона оси диполя к оси вращения:

При определении относительного расположения уровней генерации излучения на разных частотах множитель $f(\beta)$ выпадает. Однако для оценки абсолютного расстояния уровня от нейтронной звезды этот множитель может стать существенным. Так, для углов $\beta > 60^{\circ}$ расстояние г при заданном θ будет в два раза больше, чем при $\beta = 0$.

Оценим абсолютные значения r₂₀ и r₁₀. Одна из возможностей для такой оценки связана с использованием статистических зависимостей.

$$\theta_{10} = 6,61 \cdot P^{-0,25}$$
 (30) $(r/R_*)_{10} = 63,5P^{1/2}/f^2(\beta)$ (31)

Определив уровень генерации на одной из частот (1,5 или 3 ГГц), мы вычисляем уровень для второй частоты из соотношения:

$$r_2 = r_1 \cdot n_2^2 / n_1^2 \tag{32}$$

Другая возможность связана с предположением о том, что генерация излучения на данном уровне осуществляется на плазменной частоте:

$$\nu = \nu_p = \sqrt{\frac{2n_p e^2}{\pi m}} \quad (33)$$

в результате развития двухпотоковой неустойчивости. Циклотронная неустойчивость может развиваться на больших расстояниях от поверхности, близко к световому цилиндру. Множитель 2 учитывает суммарную концентрацию электронов и позитронов. Полагаем, что магнитное поле в области генерации имеет дипольную структуру, значительная часть энергии первичного пучка передаётся вторичной электрон-позитронной плазме:

$$\gamma_b n_b mc^2 \approx 2\gamma_p n_p mc^2$$
 (34) $n_b = B/ceP$ (35)

Расстояние соответствующего уровня до центра нейтронной звезды:

$$\frac{r}{R_*} = \sqrt[3]{\frac{e\gamma_b B_S}{\pi m c \gamma_p P \nu^2}} \qquad (36)$$

При В₁₂ = B/10¹², v₉ = v/10⁹ и γ_b = 10⁶, γ_p = 10:
$$\frac{r}{R_*} = 82.4 \cdot \sqrt[3]{\frac{B_{12}}{Pv_9^2}}$$
(37)

Для оцененных выше уровней генерации:

$$<\frac{r}{R_*}(3 \Gamma \Gamma \Pi)>=40$$
 (38), $<\frac{r}{R_*}(1,5 \Gamma \Gamma \Pi)>=63$ (39).

(«The Parkes multibeam pulsar survey – IV. Discovery of 180 pulsars and parameters for 281 previously known pulsars» G. Hobbs at al., 2004)

Луч зрения проходит через центр конуса излучения

$$\sin\beta = \frac{\sin(\theta/2)}{\sin(W_{10}/4)} \tag{40}$$

Мы использовали значения θ, полученные в *I. F. Malov, E. B. Nikitina, Astron. Rep. 56, 693 (2012):*

$$\sin\theta = f(\beta)(r/r_{LC})^{1/2} = 0,1565f(\beta)/(B_{12}P)^{1/4}$$
(41)

$$f(\beta) = \frac{\sqrt{2^{1/2} [\cos\beta(9 - \sin^2\beta)^{1/2} + \sin^2\beta](9 - \sin^2\beta)^{3/4}}}{3\sqrt{3^{1/2} [(9 - \sin^2\beta)^{1/2} - \cos\beta]^{1/2}}}$$
(42)

(41) и (42) в (40)

$$\sin(W_{10}/4) = \frac{\left[1 - (1 - \sin^2\theta)^{1/2}\right]^{1/2}}{\sqrt{2}\sin\beta}$$
(43)

- M. J. Keith, S. Johnston, P. Weltevrede, and M. Kramer, Monthly Not. Roy. Astron. Soc. 402, 745 (2010).
- R. N. Manchester, P. A. Hamilton, and P. M. McCulloch, Monthly Not. Roy. Astron. 192, 153 (1980).
- 3. D. M. Gould and A. G. Lyne. Monthly Not. Roy. Astron. 301, 235 (1998).
- 4. N. D'Amico, B. W. Stappers, M. Bailes, et al., Monthly Not. Roy. Astron. 297, 28 (1998).
- 5. D. J. Morris, J. Hobbs, A. G. Lyne, et al., Monthly Not. Roy. Astron. 335, 275 (2002).
- 6. M. Kramer, J. F. Bell, R. N. Manchester, et al., Monthly Not. Roy. Astron. 342, 1299 (2003).
- 7. G. Hobbs, A. Faulkner, J. H. Stairs, et al., Monthly Not. Roy. Astron. 332, 1439 (2004).
- 8. D. R. Lorimer, A. J. Faulkner, A. G. Lyne, et al., Monthly Not. Roy. Astron. 372, 777 (2006).
- 9. M. J. Keith, R. P. Eatough, A. G. Lyne, et al., Monthly Not. Roy. Astron. 395, 837 (2009).

Nº	Пульсар (Ј)	Р, с	W ₁₀ , град	βı
1	0627+0706	0,48	7,2	74,4
2	0826+2637	0,531	6,9	119,3
3	0828-3417	1,849	132	2,5
4	0831-4406	0,312	19,6	35,5
5	0834-4159	0,12	33,8	22,8
6	0842-4851	0,644	8,6	58,4
7	0905-5127	0,346	14,9	29,5
8	0908-4913	0,107	20	24,0
9	0953+0755	0,253	30,3	29,5
10	1057-5226	0,197	34,2	17,4
11	1107-5907	0,253	26,3	71,6
12	1126-6054	0,203	24,8	42,8
13	1244-6531	1,55	6	65,9
14	1413-6307	0,395	10,2	63,3
15	1424-6438	1,02	31,1	15,2
16	1549-4848	0,288	16,8	30,3
17	1611-5209	0,182	7,4	127,7
18	1613-5234	0,66	39,7	9,0
19	1627-4706	0,14	69,2	11,1
20	1637-4450	0,25	47,1	15,3
21	1637-4553	0,119	20,4	49,6

Nº	Пульсар (Ј)	Р, с	₩ ₁₀ , град	βı
22	1705-1906	0,299	17	36,2
23	1713-3844	1,6	8,8	20,5
24	1722-3712	0,236	13,9	47,0
25	1737-3555	0,398	8	100,1
26	1739-2903	0,323	14,9	37,5
27	1806-1920	0,88	86,8	7,9
28	1808-1726	0,24	166,2	7,5
29	1825-0935	0,769	21,7	12,1
30	1842+0358	0,23	11,1	114,5
31	1843-0702	0,19	19,2	44,3
32	1849+0409	0,76	9,7	36,5
33	1851+0418	0,29	112,2	5,6
34	1852-0118	0,45	37,2	13,3
35	1903+0925	0,36	207,7	2,0
36	1913+0832	0,13	31,1	24,1
37	1915+1410	0,3	41,5	23,5
38	1932+1059	0,227	20,7	40,1
39	1946+1805	0,441	42,6	21,1
40	2023+5037	0,37	9,1	101,3
41	2032+4127	0,14	34,4	16,7
42	2047+5029	0,45	6,4	120,8

Использование поляризационных данных

В использованной нами модели зависимость позиционного угла линейной поляризации ψ от долготы Φ выражается зависимостью:

$$\operatorname{tg} \psi = \frac{\sin\beta\sin\Phi}{\cos\beta\sin\zeta - \sin\beta\cos\zeta\cos\Phi}.$$

Максимальная производная позиционного угла достигается в центре профиля и равна

$$C = \left|\frac{d\psi}{d\Phi}\right|_{max} = \frac{\sin\beta}{\sin(\zeta - \beta)}.$$

Учитывая уравнение (2), мы можем оценить угол β:

$$\sin\beta <= \frac{0,1565Cf(\beta)}{(PB_{12})^{1/4}}.$$

ного	Nº	Пульсар (Ј)	β2	Nº	Пульсар (Ј)	β2
ется	1	0627+0706	37,4	22	1705-1906	65,4
	2	0826+2637	79,2	23	1713-3844	
	3	0828-3417	4,8	24	1722-3712	65,0
	4	0831-4406		25	1737-3555	3,0
	5	0834-4159		26	1739-2903	85,0
(44)	6	0842-4851		27	1806-1920	
	7	0905-5127	12,7	28	1808-1726	
	8	0908-4913	40,2	29	1825-0935	9,1
	9	0953+0755	30,0	30	1842+0358	
СЯ В	10	1057-5226	18,8	31	1843-0702	
	11	1107-5907		32	1849+0409	
	12	1126-6054		33	1851+0418	5,9
	13	1244-6531	18,9	34	1852-0118	
(45)	14	1413-6307		35	1903+0925	
	15	1424-6438		36	1913+0832	
	16	1549-4848	73,0	37	1915+1410	
	17	1611-5209	98,7	38	1932+1059	12,8
	18	1613-5234		39	1946+1805	13,0
	19	1627-4706		40	2023+5037	45,5
(46)	20	1637-4450		41	2032+4127	11,8
(40)	21	1637-4553	104,4	42	2047+5029	

Вычисление угла β по ширине профиля и

максимальной производной позиционного угла

(47)

$$\cos\theta = \cos\beta\cos\zeta + \sin\beta\sin\zeta\cos(W_{10}/2)$$

Два других уравнения:

$$\sin\theta = f(\beta)(r/r_{LC})^{\frac{1}{2}} = 0,1565f(\beta)/(B_{12}P)^{1/4}$$
 (48)

$$C = \left| \frac{d\psi}{d\varphi} \right|_{max} = \frac{\sin\beta}{\sin(\zeta - \beta)} \qquad =>$$

$$tg\beta = \frac{C(1 - \cos^2\zeta)^{1/2}}{1 + C\cos\zeta}$$
(49)

Решая систему относительно θ, ζ и β, мы получим значения угла β. Вычисления проводились при C>0 и C<0.

No		Dic	β	3	No	Пульсар	Dec	β	3
IN≌	пульсар (з)	Ρ, Ο	C>0	C<0	IN≌	(J)	Ρ, Ο	C>0	C<0
1	0627+0706	0,48	40,6	73,7	22	1705-1906	0,299	42,3	70,4
2	0826+2637	0,531	41,1	65,3	23	1713-3844	1,6		
3	0828-3417	1,849		22,2	24	1722-3712	0,236	41,5	70,2
4	0831-4406	0,312			25	1737-3555	0,398	16,4	12,4
5	0834-4159	0,12			26	1739-2903	0,323	43,3	63,6
6	0842-4851	0,644			27	1806-1920	0,88		
7	0905-5127	0,346	35,1	23,0	28	1808-1726	0,24		
8	0908-4913	0,107	39,2	27,2	29	1825-0935	0,769	35,6	16,6
9	0953+0755	0,253	36,4	24,2	30	1842+0358	0,23		
10	1057-5226	0,197	35,4	23,3	31	1843-0702	0,19		
11	1107-5907	0,253			32	1849+0409	0,76		
12	1126-6054	0,203			33	1851+0418	0,29		16,6
13	1244-6531	1,55	41,0	23,3	34	1852-0118	0,45		
14	1413-6307	0,395			35	1903+0925	0,36		
15	1424-6438	1,02			36	1913+0832	0,13		
16	1549-4848	0,288	52,4	55,0	37	1915+1410	0,3		
17	1611-5209	0,182	46,2	62,2	38	1932+1059	0,227	28,8	
18	1613-5234	0,66			39	1946+1805	0,441	27,6	18,2
19	1627-4706	0,14			40	2023+5037	0,37	39,3	76,9
20	1637-4450	0,25			41	2032+4127	0,14		20,4
21	1637-4553	0,119	42,4	60,1	42	2047+5029	0,45		

Аппроксимация модельной кривой наблюдаемых значений позиционного угла

Для ряда пульсаров были проведены поляризационные измерения в главном импульсе и в интеримпульсе, Для таких объектов мы можем вписать модельную зависимость

$$tg\psi = \frac{\sin\beta\sin\Phi}{\cos\beta\sin\zeta - \sin\beta\cos\zeta\cos\Phi}$$
(50)

при разных значениях β и ζ, в массив наблюдаемых точек и по наилучшему их согласию получить наиболее вероятную величину β.

Модельная кривая для пульсара J0627+0706. Крестиками показаны измеренные значения позиционного угла.

NՉ	Пульсар (Ј)	Р, с	β4	NՉ	Пульсар (Ј)	Р, с	β4
1	0627+0706	0,48	79 , 86 [1]	22	1705-1906	0,299	-
2	0826+2637	0,531	<89,5> (компиляция в [2])	23	1713-3844	1,6	-
3	0828-3417	1,849	10 [3]	24	1722-3712	0,236	82 , 90,7 [1]
4	0831-4406	0,312	-	25	1737-3555	0,398	-
5	0834-4159	0,12	-	26	1739-2903	0,323	80 , 84,2 [1]
6	0842-4851	0,644	-	27	1806-1920	0,88	-
7	0905-5127	0,346	-	28	1808-1726	0,24	-
8	0908-4913	0,107	96[4]	29	1825-0935	0,769	9
9	0953+0755	0,253	18,9 <7,3>[3, 5, 6]	30	1842+0358	0,23	-
10	1057-5226	0,197	6,8	31	1843-0702	0,19	-
11	1107-5907	0,253	-	32	1849+0409	0,76	-
12	1126-6054	0,203	-	33	1851+0418	0,29	-
13	1244-6531	1,55	-	34	1852-0118	0,45	-
14	1413-6307	0,395	-	35	1903+0925	0,36	-
15	1424-6438	1,02	-	36	1913+0832	0,13	-
16	1549-4848	0,288	90[1]	37	1915+1410	0,3	-
17	1611-5209	0,182	-	38	1932+1059	0,227	<26> (компиляция в [2])
18	1613-5234	0,66	-	39	1946+1805	0,441	5
19	1627-4706	0,14	-	40	2023+5037	0,37	66
20	1637-4450	0,25	-	41	2032+4127	0,14	5
21	1637-4553	0,119	-	42	2047+5029	0,45	-

- M. J. Keith, S. Johnston, P. Weltevrede, and M. Kramer, Monthly Not. Roy. Astron. Soc. 402, 745 (2010).
- 2. V. E. Zavlin and G. G. Pavlov, Astrophys. J. 616, 452 (2004).
- 3. A. G. Lyne and R. N. Manchester, Monthly Not. Roy. Astron. 234, 477 (1988).
- 4. M. Kramer and S. Johnston, Monthly Not. Roy. Astron. 390, 87 (2008).
- 5. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005).
- 6. R. N. Manchester, P. A. Hamilton, and P. M. McCulloch, Monthly Not. Roy. Astron. 192, 153

Поляризационные измерения на долготах интеримпульса, как правило, скудны, и основные данные приходятся на главный импульс.

Использование дополнительных аргументов для оценки угла β

При ортогональности магнитного момента и оси вращения расстояние между МР и IP должно быть очень близко к 180° и, кроме того, оно не должно зависеть от частоты. В случае соосных пульсаров расстояние МР–IP может быть в принципе любым (в том числе и равным 180°) и может зависеть от частоты.

Соосные - расстояния MP–IP более чем на 10° отличаются от 180° и/или β < 30°: PSR J0828-3417, 0831-4406, 0834-4159, 0953+0755, 1057-5226, 1244-6531, 1424-6438, 1627-4706, 1637-4450, 1737-3555, 1806-1920, 1808-1726, 1825-0935, 1851+0418, 1852-0118, 1903+0925, 1932+1059, 1946+1805, 2032+4127.

Ортогональные – расстояния MP-IP не сильно отличаются от 180° и оценки β высоки: PSR J0842-4851, 0908-4913, 1107-5907, 1126-6054, 1413-6307, 1549-4848, 1637-4553, 1705-1906, 1722-3712, 1739-2903.

Для 13 пульсаров расстояния MP–IP близки к 180°, но для них нет надежных оценок β .

- ✓ **PSR B0950+08**. Согласно нашим оценкам $\beta = 18^{\circ},9$ и $\zeta = 6^{\circ},7$ этот пульсар относится к ротаторам, близким к соосным.
- PSR B1055-52. Значения β
 заключены в интервале от 8°
 до 20°, что свидетельствует о
 его принадлежности к
 соосным объектам.
- PSR B1822-09. Наши оценки
 угла β для этого источника
 дают значение 9°. Это
 соосный ротатор.

Представление хода позиционного угла ψ в пульсаре В1055-52 при $\beta = 6,8^{\circ}$ и $\zeta = -5,0^{\circ}$ (сплошная кривая) вместе с измеренными значениями ψ (крестики).

Рис. 13

Оценка возраста объектов:

- ✓ характеристический возраст $\tau = P/(2dP/dt)$,
- ✓ расстояние |z| пульсара от плоскости Галактики,
- ✓ светимость L.
- R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005)

$$\beta < 30^{\circ}: \qquad \beta > 60^{\circ}: = 6,35 \pm 1,06, \qquad = 5,59 \pm 1,12, = 1,50 \pm 0,47, \qquad = 2,25 \pm 0,53,
 (51)$$

Медианы распределений составляют:

 $\beta < 30^{\circ}: \qquad \beta > 60^{\circ}: \\ \tau = 3,8 \times 10^{6} \text{ лет}, \qquad \tau = 7,5 \times 10^{5} \text{ лет}, \\ L = 40,0 \text{ мЯн } \kappa n \kappa^{2}, \qquad L = 188,5 \text{ мЯн } \kappa n \kappa^{2}, \\ |z| = 0,21 \text{ } \kappa n \kappa, \qquad |z| = 0,085 \text{ } \kappa n \kappa. \end{cases}$ (52)

Основные результаты, выносимые на защиту:

- На основе данных о структуре импульсов и ходе позиционного угла линейной поляризации на частотах около 1 ГГц для 80 пульсаров проведены оценки угла β между осью вращения и магнитным моментом нейтронной звезды. Вычисления проведены с использованием нескольких методов. Выведены уравнения для определения угла β при различной форме наблюдаемого профиля. Получены их решения для 34 пульсаров. Проведено сравнение величин β, вычисленных различными способами.
- 2. Вычислены значения углов по данным на 10 и 20 см для более 300 пульсаров.
- 3. Определены отношения радиуса конуса излучения к минимальному расстоянию луча зрения от центра этого конуса для нескольких десятков пульсаров по данным на 10 и 20 см. Оценены абсолютные значения расстояний от центра нейтронной звезды до уровней генерации излучения на данных частотах. Эти оценки хорошо согласуются между собой и дают радиусы генерации порядка нескольких десятков радиусов нейтронной звезды. При проведении вычислений учтено возможное изменение размеров полярной шапки, связанное с наклоном конуса излучения к оси вращения пульсара, т.е. влияние угла β.

- 4. Проведено исследование пульсаров с интеримпульсами. В ряде пульсаров β < 20°, и для них можно ожидать не только интеримпульсы, но и межимпульсное излучение и корреляции в поведении интеримпульсов и главных импульсов. В других пульсарах этот угол больше 60°, и при достаточно широком конусе излучения и благоприятной ориентации луча зрения наблюдателя возможно появление интеримпульсов. Таким образом, подтверждается высказанное ранее предположение о двух типах пульсаров с интеримпульсами соосных и ортогональных.</p>
- Обнаружено, что возраст пульсаров с интеримпульсами и β > 60° в несколько раз меньше, чем у пульсаров, имеющих интеримульсы и β < 30°.
- 6. В результате проведенных исследований сделаны выводы о структуре магнитосферы пульсаров: определены углы, характеризующие эту структуру; оценены уровни генерации излучения на разных частотах; подтверждена дипольность магнитного поля пульсара.

Спасибо за внимание!

Замечания ведущей организации

Замечание 5:

P.Weltevrede and G.Wright, MNRAS, v.395, p.2117 (2009)

T.D. van Ommen et al. «Polarimetric observations of southern pulsars at 800 and 950 MHz», MNRAS, v.287, p.307 (1997) – ссылка [21], результаты подробно обсуждаются в п.2.5 Главы I диссертации.

Замечания оппонента Чугая Н.Н.

Замечание: ... зависимость W(P) (рис.5) практически совпадает с тем, что получено в работе Weltevrede et al. (2008) и это не обсуждается в диссертации.

Замечание: ... В случае исследования зависимости высоты генерации от частоты было бы целесообразно сопоставить результат с работой Mitra & Rankin (2002)

Замечание: Автор ограничился представлением собственных результатов и не озаботился сравнением их с тем, что сделано другими авторами.

v (МГц)	b	Ссылка
111	$0,45\pm0,08$	Малов О.И., Малофеев В.М. Профили средних импульсов радиопульсаров на 102 и 111 МГц // Астрономический журнал. 2010. Т. 87. С. 238.
408	0,36±0,05	Мапchester R. N., Taylor J. H. Observed and derived parameters for 330 pulsars // Astronomical Journal. 1981. V. 86. Р. 1953-1973. Малов И.Ф об углах между осью магнитного диполя и осью вращения в пульсарах // Астрофизика. 1986. т. 24. с. 507
800-950	0,27±0,08	Малов И.Ф., Никитина Е.Б. Углы между осью вращения и магнитным моментом в 80 радиопульсарах по данным наблюдений на частотах около 1 ГГц // Астрономический журнал. 2011. т. 88. с. 22
1500	0,24±0,05	Малов И.Ф., Никитина Е.Б. О геометрии магнитосферы радиопульсаров// Астрономический журнал. 2011. т. 88. с. 954
3000	0,25±0,09	Малов И.Ф., Никитина Е.Б. О геометрии магнитосферы радиопульсаров// Астрономический журнал. 2011. т. 88. с. 954

Замечания оппонента Бирюкова А.В.

Замечание 1 и 4:

$$C^{2}(1 - D^{2})y^{4} + 2C(1 - D)y^{3} + [1 + 2DC^{2}(1 - D)]y^{2} +$$

$$+2C(D - B^{2})y + D^{2}C^{2} - B^{2}(1 + C^{2}) = 0$$
⁽¹⁾

$$C^{2}(\mathbf{1} - \mathbf{D})^{2}y^{4} + 2C(1 - D)y^{3} + [1 + 2DC^{2}(1 - D)]y^{2} + (2)$$
$$+ 2C(D - B^{2})y + D^{2}C^{2} - B^{2}(1 + C^{2}) = 0$$

λ, см	β2, град (прежи	ние значения)	β2, град (новые значения)				
	C > 0	C < 0	C > 0	C < 0			
10	33,9	52,1	30,9	31,1			
20	33,9	54,1	29,5	31,6			
30	36,4	49,1	32,2	34,2			

Таблица 1. Пульсары без интеримпульсов

N⁰	Пульсар	<β> new	<\$> old	№	Пульсар	<β> new	<\$> old	№	Пульсар	<β> new	<\$> old	№	Пульсар	<β> new	<β> old
1	J0034-0721	7,3	7,3	33	J0729-1448	9,5	9,5	65	J0934-5249	40,0	42,7	97	J1114-6100	8,9	8,9
2	J0051+0423	5,5	5,5	34	J0729-1836	11,6	11,6	66	J0941-5244	14,6	14,6	98	J1115-6052	26,9	28,7
3	J0108-1431	9,5	23,9	35	J0738-4042	17,9	29,7	67	J0942-5552	33,2	39,9	99	J1116-4122	46,7	46,7
4	J0134-2937	16,3	16,3	36	J0742-2822	35,4	37,9	68	J0942-5657	33,7	33,7	100	J1119-6127	13,8	27,1
5	J0151-0635	4,3	4,3	37	J0745-5353	25,8	32,4	69	J0953+0755	15,6	15,6	101	J1123-4844	13,2	13,2
6	J0152-1637	28,0	31,0	38	J0749-4247	20,6	20,6	70	J0954-5430	45,3	45,6	102	J1123-6259	27,7	30,3
7	J0206-4028	35,8	35,8	39	J0809-4753	24,9	24,9	71	J0955-5304	25,2	25,2	103	J1126-6054	18,7	18,7
8	J0211-8159	4,8	4,8	40	J0820-1350	58,8	58,8	72	J1001-5507	47,9	47,9	104	J1126-6942	15,6	15,6
9	J0255-5304	35,8	35,8	41	J0820-3921	4,0	4,0	73	J1003-4747	12,0	12,0	105	J1133-6250	1,7	1,7
10	J0304+1932	10,7	10,7	42	J0821-3824	9,6	9,6	74	J1015-5719	5,4	20,5	106	J1136+1551	46,2	47,5
11	J0401-7608	30,9	32,3	43	J0821-4221	10,1	10,1	75	J1016-5345	29,2	29,2	107	J1137-6700	2,6	2,6
12	J0448-2749	13,3	13,3	44	J0834-4159	14,3	14,3	76	J1016-5857	7,9	7,9	108	J1138-6207	28,8	28,8
13	J0450-1248	7,4	7,4	45	J0837+0610	32,5	32,5	77	J1017-5621	22,1	22,1	109	J1141-3107	11,1	11,1
14	J0452-1759	15,0	15,0	46	J0837-4135	55,9	56,6	78	J1019-5749	10,3	30,9	110	J1141-3322	9,4	9,4
15	J0459-0210	13,5	13,5	47	J0838-2621	6,9	6,9	79	J1020-6026	4,5	4,5	111	J1143-5158	22,4	22,4
16	J0520-2553	13,1	13,1	48	J0843-5022	14,3	14,3	80	J1032-5911	8,1	8,1	112	J1146-6030	13,6	13,6
17	J0525+1115	13,3	13,3	49	J0846-3533	12,4	12,4	81	J1034-3224	1,9	1,9	113	J1157-6224	19,5	19,5
18	J0533+0402	18,4	18,4	50	J0849-6322	10,2	10,2	82	J1036-4926	17,6	17,6	114	J1204-6843	18,2	18,2
19	J0536-7543	24,6	31,2	51	J0855-3331	47,7	47,7	83	J1038-5831	17,2	17,2	115	J1215-5328	7,2	7,2
20	J0540-7125	10,8	10,8	52	J0856-6137	13,4	13,4	84	J1043-6116	18,4	18,4	116	J1216-6223	9,7	9,7
21	J0543+2329	11,0	11,0	53	J0857-4424	13,4	13,4	85	J1046-5813	19,2	19,2	117	J1224-6407	26,1	26,1
22	J0601-0527	10,5	10,5	54	J0901-4624	10,4	10,4	86	J1047-3032	5,0	5,0	118	J1225-5556	17,3	17,3
23	J0614+2229	33,9	35,5	55	J0902-6325	12,4	12,4	87	J1047-6709	14,1	14,1	119	J1225-6408	11,7	11,7
24	J0624-0424	8,2	8,2	56	J0905-4536	2,2	2,2	88	J1048-5832	37,9	38,9	120	J1231-4609	7,5	7,5
25	J0630-2834	19,1	30,8	57	J0905-5127	19,1	21,9	89	J1052-5954	19,6	19,6	121	J1236-5033	9,0	9,0
26	J0631+1036	10,1	10,1	58	J0907-5157	20,3	30,3	90	J1055-6028	12,1	12,1	122	J1240-4124	31,5	31,5
27	J0636-4549	27,0	27,0	59	J0908-4913	29,4	29,4	91	J1056-6258	21,7	28,9	123	J1243-6423	58,9	58,9
28	J0656-2228	20,3	20,3	60	J0922+0638	41,1	43,1	92	J1057-5226	16,4	27,8	124	J1244-5053	18,5	18,5
29	J0656-5449	13,8	13,8	61	J0924-5302	17,8	17,8	93	J1059-5742	54,5	55,5	125	J1248-6344	6,3	6,3
30	J0659+1414	14,9	25,9	62	J0924-5814	4,8	4,8	94	J1110-5637	12,1	12,1	126	J1253-5820	15,2	15,2
31	J0709-5923	30,1	30,1	63	J0932-3217	30,0	30,0	95	J1112-6613	10,6	10,6	127	J1301-6305	3,7	3,7
32	J0719-2545	16,4	16,4	64	J0934-4154	13,2	13,2	96	J1112-6926	11,7	11,7	128	J1305-6455	6,4	6,4

41

№	Пульсар	<β> new	<β> old	№	Пульсар	<β> new	<β> old	№	Пульсар	<β> new	<β> old	№	Пульсар	<β> new	<β> old
129	J1305-6203	20,6	25,7	161	J1507-6640	43,4	43,4	193	J1604-4909	31,1	31,1	225	J1651-4246	10,0	27,3
130	J1306-6617	5,3	5,3	162	J1512-5759	34,8	36,5	194	J1605-5257	4,5	4,5	226	J1651-7642	7,1	7,1
131	J1319-6056	16,8	16,8	163	J1513-5908	6,8	22,8	195	J1607-0032	26,9	26,9	227	J1652-1400	9,6	9,6
132	J1320-5359	32,9	34,7	164	J1514-4834	21,3	21,3	196	J1609-1930	27,8	27,8	228	J1653-3838	16,5	16,5
133	J1320-3512	9,6	9,6	165	J1514-5925	27,7	38,1	197	J1611-5209	58,3	58,3	229	J1654-2713	15,9	15,9
134	J1326-5859	32,1	38,3	166	J1515-5720	13,1	13,1	198	J1612-2408	14,7	14,7	230	J1655-3048	2,9	2,9
135	J1327-6222	19,9	19,9	167	J1517-4356	17,9	17,9	199	J1614-3937	11,3	11,3	231	J1700-3312	11,9	11,9
136	J1327-6301	6,5	6,5	168	J1522-5829	9,5	9,5	200	J1614-5048	17,4	17,4	232	J1701-4533	6,9	6,9
137	J1327-6400	10,0	10,0	169	J1524-5706	42,8	43,1	201	J1615-5537	18,2	18,2	233	J1701-3726	9,4	9,4
138	J1333-4449	24,1	24,1	170	J1528-4109	20,8	20,8	202	J1626-4807	7,4	7,4	234	J1702-4128	28,0	33,9
139	J1339-4712	34,5	34,5	171	J1530-5327	16,5	16,5	203	J1632-4757	15,3	15,3	235	J1702-4306	11,5	11,5
140	J1340-6456	9,9	9,9	172	J1531-4012	16,5	16,5	204	J1632-4818	16,4	16,4	236	J1702-4310	11,3	29,0
141	J1341-6220	20,6	20,6	173	J1534-5334	19,9	19,9	205	J1633-5015	13,9	13,9	237	J1703-3241	55,5	56,6
142	J1349-6130	38,4	39,5	174	J1534-5405	9,8	9,8	206	J1637-4553	18,0	18,0	238	J1703-4851	10,2	10,2
143	J1352-6803	8,6	8,6	175	J1535-4114	12,2	12,2	207	J1637-4642	14,5	28,9	239	J1705-1906	44,5	46,6
144	J1356-5521	9,2	9,2	176	J1536-3602	6,2	6,2	208	J1638-4417	11,6	11,6	240	J1705-3950	27,4	34,6
145	J1357-6429	8,6	25,9	177	J1538-5551	63,8	63,8	209	J1638-4608	62,6	62,6	241	J1709-1640	60,7	61,2
146	J1359-6038	34,7	37,3	178	J1539-5626	22,8	27,2	210	J1638-4725	8,9	8,9	242	J1709-4429	19,0	29,9
147	J1401-6357	35,6	35,6	179	J1541-5535	25,3	25,3	211	J1639-4604	10,4	10,4	243	J1713-3949	38,0	38,0
148	J1403-7646	4,2	4,2	180	J1542-5034	32,8	32,8	212	J1640-4715	14,3	14,3	244	J1714-1054	26,6	26,6
149	J1406-6121	41,9	41,9	181	J1543-5459	44,3	44,3	213	J1641-2347	7,6	7,6	245	J1715-3903	11,7	21,8
150	J1410-7404	87,8	87,8	182	J1548-5607	9,1	9,1	214	J1643-4505	14,6	14,6	246	J1717-5800	5,8	5,8
151	J1412-6145	14,2	14,2	183	J1549-4848	16,7	16,7	215	J1644-4559	5,9	8,5	247	J1718-3718	17,2	17,2
152	J1413-6307	38,0	38,0	184	J1551-5310	18,4	18,4	216	J1646-4346	16,8	16,8	248	J1719-4006	13,5	13,5
153	J1415-6621	17,9	17,9	185	J1557-4258	12,6	12,6	217	J1645-0317	14,2	14,2	249	J1721-3532	32,3	37,0
154	J1427-4158	13,6	13,6	186	J1559-4438	25,1	25,1	218	J1646-6831	19,4	28,7	250	J1722-3207	30,0	30,0
155	J1428-5530	32,9	36,1	187	J1600-5044	21,5	28,7	219	J1648-4611	20,1	23,8	251	J1722-3632	7,2	7,2
156	J1430-6623	25,9	25,9	188	J1600-5751	5,4	5,4	220	J1649-4653	19,3	19,3	252	J1722-3712	42,3	43,7
157	J1452-5851	21,5	25,3	189	J1601-5335	14,0	14,0	221	J1649-5553	3,0	3,0	253	J1723-3659	23,8	31,0
158	J1453-6413	44,2	44,7	190	J1602-5100	23,7	23,7	222	J1650-1654	11,7	11,7	254	J1726-3530	39,1	39,1
159	J1456-6843	24,2	31,4	191	J1603-3539	7,9	7,9	223	J1650-4502	46,1	46,1	255	J1730-3350	65,9	66,0
160	J1507-4352	23,5	23,5	192	J1603-5657	54,4	54,4	224	J1650-4921	32,8	32,8	256	J1731-4744	28,5	28,5

№	Пульсар	<β> new	<β> old	№	Пульсар	<β> new	<β> old	№	Пульсар	<β> new	<β> old	№	Пульсар	<β> new	<β> old
257	J1733-2228	5,1	5,1	289	J1805-0619	10,4	10,4	321	J1837+1221	18,7	18,7	353	J1919+0134	9,1	9,1
258	J1733-3716	14,1	28,2	290	J1806-2125	18,2	18,2	322	J1837-1837	20,4	20,4	354	J1932+1059	17,7	28,0
259	J1734-3333	17,3	29,2	291	J1807-0847	21,1	21,1	323	J1838-0453	14,8	14,8	355	J1932-3655	16,2	16,2
260	J1735-3258	10,2	10,2	292	J1808-0813	11,9	11,9	324	J1838-0549	12,7	12,7	356	J1941-2602	47,1	47,1
261	J1737-3137	15,0	23,3	293	J1808-3249	13,2	13,2	325	J1839-0905	13,6	13,6	357	J1943+0609	13,3	13,3
262	J1737-3555	19,4	19,4	294	J1809-0743	10,0	10,0	326	J1841-0345	7,5	7,5	358	J1943-1237	39,9	39,9
263	J1738-2955	20,3	20,3	295	J1811-0154	12,3	12,3	327	J1841-0425	28,3	30,4	359	J1944-1750	4,9	4,9
264	J1739+0612	10,3	10,3	296	J1812-1910	9,2	9,2	328	J1841-7845	5,7	5,7	360	J1946+1805	7,3	11,1
265	J1739-1313	50,7	50,7	297	J1814-1744	7,9	7,9	329	J1842-0905	11,5	11,5	361	J1946-2913	17,0	17,0
266	J1739-2903	23,1	23,1	298	J1815-1738	32,8	32,8	330	J1842+1332	1,9	1,9	362	J1946-1312	14,9	14,9
267	J1739-3023	24,4	27,8	299	J1816-5643	14,0	14,0	331	J1843-0355	7,0	7,0	363	J1947+0915	12,3	12,3
268	J1740-3015	41,1	41,1	300	J1817-3837	24,8	24,8	332	J1843-0702	21,6	21,6	364	J1949-2524	37,9	37,9
269	J1741-3927	58,4	58,9	301	J1819+1305	5,7	5,7	333	J1844-0256	5,4	5,4	365	J1956+0838	8,1	8,1
270	J1742-4616	6,1	6,1	302	J1820-0427	37,1	37,1	334	J1844-0538	20,3	25,2	366	J2006-0807	3,2	3,2
271	J1743-3150	12,8	12,8	303	J1820-1529	23,4	23,4	335	J1845-0316	6,3	6,3	367	J2007+0809	1,5	1,5
272	J1743-3153	7,4	7,4	304	J1820-1818	8,9	8,9	336	J1845-0434	24,3	27,3	368	J2046-0421	34,5	34,5
273	J1743-4212	13,4	13,4	305	J1821-1419	7,9	7,9	337	J1845-0743	10,1	10,1	369	J2048-1616	39,1	42,2
274	J1745-3040	18,9	18,9	306	J1822-2256	9,9	9,9	338	J1847-0402	12,6	12,6	370	J2053-7200	35,3	42,8
275	J1749-3002	4,0	4,0	307	J1824-1945	58,8	58,8	339	J1848-0123	17,0	17,0	371	J2108-3429	25,7	25,7
276	J1750-3157	5,6	5,6	308	J1825-0935	14,1	23,7	340	J1848-1414	8,9	8,9	372	J2116+1414	10,9	10,9
277	J1751-4657	34,4	34,4	309	J1825-1446	14,5	23,6	341	J1848-1952	41,4	43,0	373	J2155-3118	59,3	59,8
278	J1752-2806	42,0	42,0	310	J1826-1334	10,4	24,7	342	J1852-2610	7,8	7,8	374	J2248-0101	17,6	17,6
279	J1755-2534	5,8	5,8	311	J1828-1057	6,6	6,6	343	J1853+0011	19,4	19,4	375	J2324-6054	65,6	66,2
280	J1756-2225	12,2	12,2	312	J1829-1751	18,4	18,4	344	J1855-0941	5,0	5,0	376	J2330-2005	65,6	65,6
281	J1757-2421	8,8	8,8	313	J1830-1059	35,4	35,4	345	J1900-2600	9,6	9,6	377	J2346-0609	9,6	9,6
282	J1759-2302	4,0	4,0	314	J1832-0827	17,4	17,4	346	J1901+0331	42,8	48,7				
283	J1801-2154	26,8	29,7	315	J1834-0731	13,9	13,9	347	J1901-0906	14,1	14,1				
284	J1801-2304	11,0	11,0	316	J1835-0643	13,0	13,0	348	J1901-1740	8,7	8,7				
285	J1801-2451	12,4	12,4	317	J1835-0944	11,0	11,0	349	J1903+0135	42,8	42,8	0	тличие ~ 10° -	• 33 пуль	capa
286	J1801-2920	9,0	9,0	318	J1835-1106	47,3	48,4	350	J1904+0004	8,4	8,4				
287	J1803-2137	9,7	28,1	319	J1837-0045	15,5	15,5	351	J1904-1224	17,6	17,6				
288	J1803-2712	7,1	7,1	320	J1837-0559	13,3	13,3	352	J1913-0440	48,9	48,9				

Таблица 2. Пульсары с интеримпульсами

N⁰	Пульсар (Ј)	<β> new	<β> old	N⁰	Пульсар (Ј)	<β> new	<β> old
1	0627+0706	53,4	60,7	22	1705-1906	55,2	58,9
2	0826+2637	85,9	78,9	23	1713-3844	20,5	20,5
3	0828-3417	5,4	9,9	24	1722-3712	64,2	66,1
4	0831-4406	35,5	35,5	25	1737-3555	28,8	33,0
5	0834-4159	22,8	22,8	26	1739-2903	66,0	65,6
6	0842-4851	58,4	58,4	27	1806-1920	7,9	7,9
7	0905-5127	16,8	25,1	28	1808-1726	7,5	7,5
8	0908-4913	46,1	45,3	29	1825-0935	9,5	16,5
9	0953+0755	23,2	24,4	30	1842+0358	114,5	114,5
10	1057-5226	15,4	20,3	31	1843-0702	44,3	44,3
11	1107-5907	71,6	71,6	32	1849+0409	36,5	36,5
12	1126-6054	42,8	42,8	33	1851+0418	7,1	9,4
13	1244-6531	29,0	46,5	34	1852-0118	13,3	13,3
14	1413-6307	63,3	63,3	35	1903+0925	2,0	2,0
15	1424-6438	15,2	15,2	36	1913+0832	24,1	24,1
16	1549-4848	59,9	60,1	37	1915+1410	23,5	23,5
17	1611-5209	102,2	83,7	38	1932+1059	20,8	26,9
18	1613-5234	9,0	9,0	39	1946+1805	14,3	17,0
19	1627-4706	11,1	11,1	40	2023+5037	60,3	65,8
20	1637-4450	15,3	15,3	41	2032+4127	11,4	13,5
21	1637-4553	74,2	64,1	42	2047+5029	120,8	120,8

Третий способ вычисления углов β

Общий вид системы уравнений:

$$sin\beta = C \cdot sin(\zeta - \beta)$$

$$cos\theta = cos\zeta \cdot cos\beta + D \cdot sin\beta \cdot sin\zeta$$

$$\theta = n(\zeta - \beta)$$

 $\sin\beta = \frac{\sin(\theta/2)}{\sin(W_{10}/4)}$

P.Weltevrede, S.Johnston. «Profile and polarization characteristics of energetic pulsars», Mon. Not. Roy. Astron. Soc. V.391, P. 1210, 2008

Замечание 7:

Ν Ν $\boldsymbol{\beta}_t$ β_0 Рис.1 Рис.2 Ν $\boldsymbol{\beta}_t$

Рис.3