РОССИЙСКАЯ АКАДЕМИЯ НАУК ФИЗИЧЕСКИЙ ИНСТИТУТ им. П.Н. ЛЕБЕДЕВА АСТРОКОСМИЧЕСКИЙ ЦЕНТР

На правах рукописи

Щуров Михаил Аристотелевич

ТЕПЛОВОЕ И МАЗЕРНОЕ СВЕЧЕНИЕ МЕЖЗВЕЗДНОГО ГАЗА В ТЕМНЫХ МОЛЕКУЛЯРНЫХ ОБЛАКАХ

Специальность 01.03.02 астрофизика и звездная астрономия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Москва – 2022

Работа выполнена в Астрокосмическом центре (АКЦ) Федерального государственного бюджетного учреждения науки Физического института им. П. Н. Лебедева (ФИАН) Российской Академии наук (РАН), г. Москва.

Научный руководитель:	Вальтц Ирина Евгеньевна доктор физико-математических наук, ведущий научный сотрудник, АКЦ ФИАН
Официальные оппоненты:	Зинченко Игорь Иванович Заведующий отделом, д.фм.н., (Федеральный исследовательский центр Институт прикладной физики Российской академии наук)
	Соболев Андрей Михайлович старший научный сотрудник, к.фм.н., ведущий специалист (Коуровская астрономическая обсерватория им. К.А. Бархатовой, ведущий инженер)
Ведущая организация:	Федеральное государственное бюджетное учреждение науки «Крымская астрофизическая обсерватория РАН» (ФГБУН «КрАО РАН»)

Защита состоится 30 июня 2022 г. на заседании диссертационного совета Д002.023.01 Физического института им. П.Н. Лебедева РАН (ФИАН) в конференц-зале Института космических исследований РАН (ИКИ РАН) по адресу: Москва, ул. Профсоюзная, д. 84/32, ИКИ РАН, подъезд А2.

С диссертаций можно ознакомиться в библиотеке ФИАН по адресу: г. Москва, Ленинский проспект, д. 53, с авторефератом диссертации – по адресу на сайте <u>http://asc-lebedev.ru/index.php?dep=9&dissov=11</u>

Автореферат разослан 30.03.2022 г.

Ученый секретарь диссертационного совета, кандидат физико-математических наук

Н.Н. Шахворостова

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ.

Актуальность темы и анализ современного состояния исследований.

Звезды образуются в результате гравитационного коллапса и фрагментации молекулярных облаков (Walmsley 1991, Cesaroni et al. 1994, Kurtz et al. 2000). Основные сведения о процессах звездообразования изложены, например, в обзорах (Shu et al. 1987, Bergin & Tafalla 2007, McKee & Ostriker 2007, Zinnecker & Yorke 2007 и ссылки в этих работах).

Процесс зарождения звезд малой массы (<1-2 M_{\odot}) изучен детально: их много, они расположены в близких окрестностях солнечной системы, время существования в стадии «до главной последовательности» длительное: для звезд Т Tauri от ~1-3x10⁶ до ~10⁸ лет (Shu et al. 1987, Bachiller 1996, Duvert et al. 2000, Evans et al. 2009). В образовании звезд промежуточной массы (IMYSO, 2-8 M_{\odot}) имеется одновременно сходство и различие как с образованием мало-массивных звезд, так и массивных (Alonso-Albi et al. 2009, Crimier et al. 2010, de Villiers et al. 2014).

Формирование массивных OB-звезд (>8 M_{\odot}), несмотря на то, что в процессе своего развития они провоцируют зарождение и развитие менее массивных звезд, т.е. играют принципиальную роль в эволюции молекулярных облаков (Kurtz 2005a,b, Reiter et al. 2011, Zinnecker & Yorke 2007), изучено хуже по объективным причинам (см. обзор Bally et al. 2005). Они, как правило, более удаленные, поэтому их исследования необходимо проводить с высоким угловым разрешением, реже встречаются и глубоко погружены в турбулентные непрозрачные слои родительского облака.

Протозвезды большой массы быстро проходят стадию «до главной последовательности» (PMS) - за <~10⁴ лет (Shepherd 2005), иногда даже без оптической фазы, и попадают на начальную часть главной последовательности нулевого возраста (ZAMS), будучи еще погруженными в пыль и находясь в стадии аккреции (Palla et al. 2005).

Зачастую наличие процесса формирования массивной звезды в молекулярном облаке можно заметить только благодаря наличию такого крупномасштабного явления, как биполярное истечение вещества, которое наблюдается в линиях различных молекул при сбросе излишков материи, падающей на протозвездный аккрецирующий диск (Kim & Kurtz 2006).

В то же время эволюционное состояние среды, в которой формируются протозвезды можно оценить, исследуя излучение ее основных составляющих. В то же время эволюционное состояние среды, в которой формируются протозвезды можно оценить, исследуя излучение ее основных составляющих. Межзвездная среда – это пыль со сложным химическим составом, межзвездный газ, который содержит, в основном, смесь молекулярного и нейтрального водорода с примесью остальных элементов в атомарном и молекулярном состоянии и космические лучи, оказывающие влияние на эту среду в различных аспектах. Прогрев среды зарождающейся протозвездой способствует испарению молекул с поверхности пылинок и увеличивает количество свободных молекул, которые при распаде уровней, возбужденных тем же инфракрасным излучением от протозвезд и столкновениями с молекулярным водородом, излучают в разных диапазонах длин волн. В настоящее время в космосе обнаружено более 260 молекул (https://cdms.astro.uni-koeln.de/classic/molecules - Кёльнский каталог молекул, обнаруженных в космосе) – в основном, это результат работы космического проекта Spitzer (https://www.spitzer.caltech.edu/ - сайт проекта Spitzer). Множество молекулярных линий остается неотождествленными. Информацию о состоянии межзвездной среды в окрестности протозвёзд дает изучение излучения молекул, находящихся в состоянии

локального термодинамического равновесия (т.е. в устойчивых условиях, при которых не меняются макроскопические интегральные параметры системы - такие, как температура, плотность, давление. Особую роль в обнаружении этих молекул и изучении их свойств играют телескопы миллиметрового диапазона, в частности телескоп IRAM-30m - один из самых больших и чувствительных на сегодняшний день миллиметровых телескопов. Он оснащен гетеродинными приемниками и камерами континуума, которые работают в диапазонах 3, 2, 1 и 0,9 мм. Спектроскопия высокого разрешения позволяет изучать процессы образования звёзд и химических элементов в молекулярных облаках (подробнее см. главу 1).

При этом особую роль в идентификации наличия протозвезд любой массы в области звездообразования играет еще один признак, а именно, вкрапления в облако скоплений мазерных конденсаций, дающих молекулярное мазерное излучение. Космические мазеры формируются в наиболее плотных структурах гигантских облаков, в которых газ находится в молекулярном состоянии. Мазерное излучение на молекулах представляет собой одно из самых распространенных явлений в межзвездной среде.

Мазеры встречаются как на ранних стадиях развития молекулярных облаков, в которых при хаотическом сжатии образуются первичные сгустки (cores) и скопления материи (clumps) (Andre et al. 2000, S. Kurtz 2004a, Cesaroni 2005 и ссылки в этих работах), так и в процессе формирования более структурированных областей зарождения протозвезд и впоследствии - в атмосферах вокруг молодых звезд и непосредственно в оболочках самих звезд разных спектральных классов.

В настоящее время существуют достаточно надежно обоснованные варианты построения соответствия эволюционной шкалы развития областей звездообразования и оценок времени жизни мазеров (см., например, Ellingsen et al. 2007, Ellingsen et al. 2012, Breen & Ellingsen 2012).

Наиболее распространенные мазеры наблюдаются в линиях молекул воды H_2O , гидроксила OH и метанола CH₃OH. Мазеры на молекулах воды - самые мощные: $H_2O \sim 10^{27} \cdot 10^{33}$ эрг/с, для сравнения: OH (на частотах 1665 и 1667 МГц) ~ $10^{27} \cdot 10^{30}$ эрг/с, CH₃OH ~ 10^{27} эрг/с (Варшалович 1986). Соответственно, в единицах спектральной плотности потока: например, в мазерах H_2O : W3 (OH) 4000 Ян, Ori KL 3000 Ян, Sgr B2 1000 Ян, W 49 N 100000 Ян, W 49 S 550 Ян, W 51 M 3000 Ян, Cep A 4700 Ян (см. каталог Cesaroni et al. 1988); в мазерах OH в отдельных пространственных компонентах: W 49 S на 1665R 230 Ян, W 49 N на 1665L 110 Ян, W 51 M 1665R 167 Ян, W3 (OH) 1665R 200 Ян, NGC 6334 F 1665L 182 Ян, G 351.775-0.538 1665L 777 Ян (обзор на VLA для δ >-45 град, Argon et al. 2000), DR 21 (OH) 237 Ян (Kurtz et al. 2004). В самом мощном метанольном мазере I класса наблюдается около 500 Ян в M 8 E (Slysh et al. 1994), в самых мощных метанольных мазерах II класса - 3880 в W3 (OH) 3880 Ян, 3910 Ян в NGC 6334 F и 4870 Ян в G 9.62+0.19 (Menten 1991).

Мазеры на молекулах воды встречаются на всех стадиях эволюции областей звездообразования и, как правило, имеют наибольшее число пространственных компонентов (мазерных пятен) в любой исследуемой области и наибольшее число деталей в наблюдаемых спектрах. Кроме того, они имеют очень маленький размер – могут быть около 1 a.e, (Hollenbach et al. 2013), для сравнения: размер пространственных компонентов мазеров ОН и метанольных мазеров II класса может быть около 3 a.e. (Menten et al. 1992), отдельных пятен метанольных мазеров I класса - от 500 до 1 000 a.e. (Kogan and Slysh 1998.

Мазеры формируются под воздействием различных механизмов возбуждения уровней молекул. Например, накачка мазеров H₂O – столкновительная (Beuther et al. 2002), осуществляется в конденсациях с повышенной плотностью вещества при столкновениях с молекулами и атомами окружающей среды, а также в атмосферах звезд, мазеров. Накачка мазеров OH в главных линиях – радиативная под воздействием инфракрасного потока от протозвезд (см, например, Moore et al. 1998, Slysh et al. 1994b, 1997, а также обсуждения и ссылки в этих работах). Накачка мазеров метанола в среде, окружающей протозвезду – радиативно-столкновительная (метанольные мазеры II-го класса), в областях, более удаленных от протозвезд - чисто столкновительная (метанольные мазеры I-го класса). (Batrla et al. 1987, Menten 1991).

Ширина наблюдаемых спектральных линий и переменность их интенсивности, а также размер области, в которой формируется и излучает мазер, и размеры его пространственных составляющих являются прямым указанием на то, с каким типом объекта и окружающей его среды или с каким размером и типом уже существующей или будущей протозвезды связана исследуемая мазерная область. По этой причине мазерные источники являются, в частности, одними из основных объектов, для которых осуществляется длительный систематический мониторинг на одиночных телескопах (см., например, Felli et al. 2007, Lekht et al. 2011) и пространственная структура которых интенсивно исследуется на интерферометрических системах – от самых первых (см., например, Migenes et al. 1999) до самых современных (см., например, Bayandina et al. 2019).

Важной особенностью мазеров H₂O, кроме их яркости, является то, что они высвечиваются в наиболее приемлемом для наблюдений с Земли диапазоне сантиметровых длин волн, которому не мешает земная атмосфера. Тем не менее, предпочтительнее проводить такие наблюдения в высокогорных районах, но особым преимуществом обладают исследования с космическими аппаратами. Такие наблюдения обеспечивают высокое угловое разрешение и выявляют структуры, позволяющие установить размеры коллапсирующих прото-образований, соответствующие именно размерам протозвезд.

Улучшение возможностей интерферометров достигается как за счёт увеличения чувствительности самих телескопов, так и за счёт увеличения расстояния между элементами интерферометра, что напрямую связано с их разрешающей способностью. Наилучшие результаты возможны при сочетании хорошо разнесенной по широте и долготе наземной сети телескопов с телескопом, находящимся на космической орбите.

Именно таким телескопом является космический радиотелескоп миссии «РадиоАстрон» (http://www.asc.rssi.ru/radioastron/index.html). Орбитальная космическая обсерватория «РадиоАстрон» была запущена 18 июля 2011 г. с космодрома «Байконур» (Республика Казахстан) для изучения астрономических объектов различных типов с беспрецедентно высоким угловым разрешением (см. Kardashev et al. 2013). Обсерватория работала в четырёх диапазонах от метровых до сантиметровых длин волн: Р – 92 см, L – 18 см, С – 6.2 см, К – 1.3 см (информация с веб-сайта миссии «РадиоАстрон») и в сочетании с наземными телескопами позволяла проводить измерения с предельно высоким угловым разрешением до 7 мксек дуги (Baan et al. 2017). 10-м космический телескоп (Space Radio Telescope, SRT) был установлен на платформе «Навигатор», разработанной в НПО им. Лавочкина

\urlhttps://link.springer.com/content/pdf/10.1134/S0038094612070143.pdf. В январе 2019 г. обсерватория завершила свою работу -

\urlhttp://www.asc.rssi.ru/radioastron/news/newsl/ru/newsl_36_ru.pdf.

Цель работы

Целью данной работы является исследование двух темных облаков – L379 - для более полного, чем это было сделано ранее, определения молекулярного состава и физических параметров газа в области L379 IRS1, основываясь на особенностях излучения молекул в тепловых линиях в этом источнике, и темной отражательной туманности 2071 – для изучения тонкой пространственной структуры распределения мазерных сгустков и более глубокого понимания строения области NGC 2071 IRS1,

используя возможности сверхвысокого пространственного разрешения, которое достигается на наземно-космическом интерферометре «Радиоастрон».

Конкретные задачи и методы исследований

- Определение молекулярного состава газо-пылевого облака L379 IRS1 по данным наблюдений на международном радиотелескопе Института Миллиметровой Астрономии (IRAM) в трех высокочастотных диапазонах - для эпох 2003 и 2007 гг.;
- 2) Изучение области L379 IRS1 в различных направлениях методами вращательных диаграмм и большого градиента скорости;
- 3) Сравнение параметров горячего и холодного газа в исследуемой области с аналогичными параметрами в других областях звездообразования;
- 4) Корреляционная обработка данных интерферометрических наблюдений мазера H₂O на частоте 22.2280 ГГц в источнике NGC 2071 IRS1, полученных в рамках работы наземно-космического интерферометра «РадиоАстрон» на FX-корреляторе АКЦ ФИАН с использованием собственной программы LineViewer, позволяющей оптимизировать и сократить время обработки сеансов мазерных интерферометрических наблюдений;
- Получение, калибровка и анализ автокорреляционных и кросс-корреляционных спектров наблюдений области NGC 2071 IRS1 с помощью стандартных задач пакета AIPS;
- 6) Построение карты распределения мазерных пятен исследуемого источника NGC 2071 IRS1 и анализ полученных данных.

Научная новизна работы

- Новизна работы состоит в том, что в широком диапазоне частот впервые были определены химические и уточнены физические параметры в области звездообразования L379 IRS1, что позволило уточнить пространственную структуру данной области, а также её возраст.
- 2) Новизна и уникальность исследований мазерной области в туманности NGC 2071 связана с тем, что для нее впервые в мире представлена обработка данных для мазерных компонентов в источнике NGC 2071 IRS1, полученных на наземнокосмических базах со сверхвысоким угловым разрешением, которое обеспечил радиоинтерферометр «РадиоАстрон».
- 3) Новизна программы «LineViewer» состоит в том, что на данный момент это единственная программа, пригодная для обработки файлов формата коррелятора АКЦ, которая позволяет провести наглядный анализ промежуточного результата и его корректировку в процессе обработки данных наблюдений в проекте «РадиоАстрон», чтобы получить релевантные параметры для улучшения или обнаружения корреляции в спектральных линиях.

Практическая ценность работы

- 1) Составленный каталог зафиксированных в L379 IRS1 линий излучения различных молекул для всех наблюдавшихся направлений имеет важную практическую ценность: он позволит использовать полученные результаты для уточнения модели источника и будущих наблюдений.
- 2) Получена новая информации о тонкой пространственной структуре источника NGC 2071 IRS1, впервые - с использованием наземно-космической РСДБ. Несомненная практическая ценность работы заключается в том, что соискатель сумел отработать методику обработки сильно искажённых данных спектральных измерений, полученных на 64-м Калязинском радиотелескопе (РФ), доказать и наглядно продемонстрировать возможность его (и подобных ему телескопов) полноценного участия в исследовании астрономических объектов дальнего космоса.

На защиту выносятся следующие основные положения:

1) При исследовании химического состава источника L379 IRS1 в тепловых линиях на 30-м радиотелескопе IRAM в диапазонах длин волн 1-3 мм получены следующие результаты:

1.1) Обнаружено излучение в линиях 24-х молекул и определена кинетическая температура газа исследуемой области по линиям молекул метанола и метилцианида, она составила 40-50 К. Обнаружено, что кроме «теплого» газа с температурой 40-50 К, в L379 IRS1 существует более «горячий» компонент, который проявляется наличием высоковозбужденных линий метанола и метилцианида. Показано, что обилие метанола и метилцианида составило 10⁻⁹ и 10⁻¹¹, соответственно;

1.2) Показано, что молекулярный состав спокойного газа очень близок к составу другой области образования звезд большой массы - DR21(OH), однако лучевая концентрация двуокиси серы в L379 IRS1, по крайней мере, в 20 раз меньше, чем в DR21(OH). Отношения содержаний SO₂/CS и SO₂/OCS, которые можно использовать в качестве химических часов, в L379 IRS1 оказались намного меньше, чем в DR21(OH). Таким образом, область звездообразования L379 IRS1 вероятно моложе, чем DR21(OH) (менее 10^5 лет);

2) В рамках выполнения научной программы наземно-космического интерферометра «РадиоАстрон» создана специализированная программа «LineViewer», предназначенная для оптимизации процесса корреляционной и посткорреляционной обработки на всех этапах в сеансах мазерных интерферометрических наблюдений, и, как следствие, ускорения доступа для научного сообщества к научным данным. При обработке сеанса наблюдений источника NGC2071 с её помощью:

2.1) Уточнены геометрические задержки телескопов (1 и 2 производные), выявлены кросс-корреляционные отклики на наземных базах, зафиксирован кросс-корреляционный отклик на наземно-космических базах, найдено оптимальное время когерентности для дальнейшей обработки ceanca; 2.2) Найдено оптимальное спектральное разрешение; получена информация о количестве спектральных компонентов на этапе предварительной обработки, их положение, ширина, амплитуда, SNR, скорости на луче зрения как в автотак и в кросс-спектрах;

3) Проведена полная обработка данных наблюдений мазера H₂O на частоте 22.2280 ГГц в темной отражательной туманности NGC 2071 в направлении инфракрасного объекта IRS1 на наземно-космическом интерферометре «Радио-Астрон». На основании корреляционного анализа получены следующие результаты:

3.1) Построена карта распределения мазерных пятен, на которой в размере ~(100 x 100) мсек дуги, т.е. ~(40 x 40) а.е. при расстоянии до туманности 390 пк, присутствует 13 пространственных компонентов. Интервал скоростей на луче зрения этих компонентов составляет (4.7 - 20.5) км/с при ширине спектральных деталей по половине мощности интенсивности FWHM = (0.2 - 0.6 км/с), плотность потока F_{η} варьируется в пределах от ~4 Ян до ~29 Ян. Лепестки обнаружены на всех наземных базах;

3.2) Для одного пространственного компонента, имеющего лучевую скорость 14.3 км/с, обнаружен интерференционный отклик на наземно-космических базах на уровне надежности бо. На основании анализа зависимости функции видности от величины проекций баз предложена двухкомпонентная модель пространственной структуры этого объекта с размерами протяженной и компактной составляющей в угловой мере 4 мсек и 0.06 мсек, т.е. 1.56 а.е. (с неопределенностью 10%) и 0.023 а.е. (с неопределенностью 50%), соответственно.

Личный вклад автора

- Соискатель самостоятельно провёл полную обработку данных наблюдений источника L379 IRS1, выполненных в 2003 и 2007 г.г. на международном 30-м телескопе IRAM в программе CLASS программного пакета GILDAS. Соискатель написал на языке C++ программный код, который, используя данные, полученные в результате обработки в CLASS, рассчитывает лучевые концентрации молекул. С его помощью были рассчитаны все лучевые концентрации для всех 24-х молекул, наблюдавшихся в этих сессиях. Дополнительно на языке C++ была написана утилита, составляющая для программы представления спектров GREG (GILDAS) скрипты для построения вращательных диаграмм. По результатам обработки в CLASS соискатель построил в GREG вращательные диаграммы для линий метанола и метилцианида.
- 2) Соискатель разработал алгоритм и написал программный код для утилиты «LineViewer», предназначенной для упрощения и ускорения процедуры получения корреляции в мазерных интерферометрических наблюдениях.
- Несмотря на малую длительность эксперимента и недостаточное заполнение UV-плоскости, тщательным подбором параметров корреляционной и посткорреляционной обработки, соискатель получил полноценный научный материал с набором всех требуемых для дальнейшего астрофизического

анализа параметров пространственного распределения мазерных деталей и их моделей.

Достоверность результатов

Основные результаты, которые выносятся на защиту, представлены в Заключении. Достоверность результатов проведенных исследований и обоснованность выводов, сформулированных в диссертации, подтверждается надежностью и техническим состоянием телескопов и международных интерферометрических сетей, наблюдения на которых проводил автор, совершенством методики обработки данных, которая проводилась с помощью современных программных пакетов, и апробацией на всероссийских и международных конференциях и семинарах с участием известных и опытных специалистов.

Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы

- Щуров М.А., Каленский С.В. Исследование области образования звезд большой массы L379 IRS1 в радиолиниях метанола и других молекул Международная Конференция Научного Совета общей физики и Астрономии АКЦ ФИАН «Звездообразование и планетообразование. Наблюдения, теория, численный эксперимент» 12 – 13 ноября 2019 г., Россия, Москва, АКЦ ФИАН \\ Устный доклад
- 2) Щуров М.А., Вальтц И.Е., Шахворостова Н.Н. РадиоАстрон. Мазерные линии H₂O и протопланетная система в темной отражательной туманности NGC 2071 XVII Конференция молодых ученых «Фундаментальные и прикладные космические исследования», посвященная Дню космонавтики 30 сентября – 02 октября 2020 г., Россия, Москва, ИКИ РАН \\ Устный доклад
- Щуров М.А., Рудницкий А.Г. Программа «LineViewer»: первичная обработка данных наблюдений космических мазеров в проекте «РадиоАстрон» Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2020» 10 – 27 ноября 2020 г., Россия, Москва, МГУ \\ Устный доклад
- 4) Щуров М.А., Вальтц И.Е., Шахворостова Н. Н. VLBI исследования в проекте «Радиоастрон»: структура мазера H₂O в NGC 2071 IRS 1 Международная Конференция Научного Совета общей физики и Астрономии АКЦ ФИАН «Звездообразование и планетообразование. Наблюдения, теория, численный эксперимент' 10 – 11 ноября 2020 г., Россия, Москва, АКЦ ФИАН \\ Устный доклад
- 5) Щуров М.А., Рудницкий А.Г. Экспресс-программа «LineViewer» для первичной обработки интерферометрических данных в проекте «РадиоАстрон»

Международная Конференция Научного Совета общей физики и Астрономии АКЦ ФИАН «Звездообразование и планетообразование. Наблюдения, теория, численный эксперимент»

10 – 11 ноября 2020 г., Россия, Москва, АКЦ ФИАН
 $\label{eq:poly}$ Устный доклад

- 6) Щуров М.А., Вальтц И.Е., Шахворостова Н.Н.
 NGC 2071 в космическом проекте «РадиоАстрон»: пространственное распределение мазерных пятен Н₂O '
 49-я студенческая научная конференция «Физика Космоса»
 27 31 января 2021 г., Россия, Екатеринбург, УРФУ \\ Устный доклад
- 7) Щуров М.А., Рудницкий А.Г. Программа LineViewer пакета Astro Space Locator (ASL) для построения и обработки усредненных спектров
 49-я студенческая научная конференция «Физика Космоса»
 27 - 31 января 2021 г., Россия, Екатеринбург, УРФУ \\ Постерный доклад
- Шуров М. А., Каленский С. В. Исследование области звёздообразования L379 по радиолиниям метанола и других молекул Конференция «Идеи С.Б. Пикельнера и С.А. Каплана и современная астрофизика» 8-12 февраля 2021, Россия, Москва, ГАИШ МГУ \\ Устный доклад

Публикации

Все результаты диссертационной работы опубликованы в рецензируемых журналах, входящих в список ВАК, и в российских и зарубежных международных конференций. Всего опубликовано 4 научных работы.

Публикации:

- С. В. Каленский, М. А. Щуров Исследование области образования звезд большой массы L379IRS1 в радиолиниях метанола и других молекул Астрономический журнал. - 2016. - Т. 93, № 4. – стр. 409-432.
- М. А. Щуров, И. Е. Вальтц, Н. Н. Шахворостова Структура мазера H₂O в NGC 2071 IRS 1 по наблюдениям на наземно-космическом радиоинтерферометре "Радиоастрон" Астрономический журнал, 2021, Т. 98, № 7, стр. 531-549
- 3) Щуров М.А., Авдеев В.Ю., Гирин И.А., Костенко В.И., Лихачёв С.Ф., Лодыгин В.А., Рудницкий А.Г., Шайхутдинов А.Р. Программа Lineviewer пакета Astro space locator (ASL) для построения и обработки усреднённых спектров Краткие сообщения по физике Физического института им. П.Н. Лебедева Российской Академии Наук, 2019. - № 4. - стр. 38-45.
- S. F. Likhachev, I. A. Girin, V. Yu. Avdeev, A. S. Andrianov, M. N. Andrianov, V. I. Kostenko, V. A. Lodigin, A. O. Lyakhovets, I. D. Litovchenko, A. G. Rudnitskiy, M. A. Shchurov, N. D. Utkin, V. A. Zuga

Astro Space Locator - A software package for VLBI data processing and reduction Astronomy and computing, 2020, Vol. 33, № 10, pp. 100426.

Объём и структура работы

Диссертация состоит из введения, трёх глав, заключения и двух приложений. Полный объём диссертации составляет 167 страниц, включая 28 рисунков и 8 таблиц. Список литературы содержит 104 наименования. В главах 1–3 последовательно представлены работы, соответствующие направлениям исследования, которые представлены выше.

Краткое содержание диссертации

Глава I. Исследование области образования звезд большой массы L379 IRS 1 в радиолиниях метанола и других молекул.

Представлены результаты спектральных наблюдений области образования звезд большой массы L379 IRS1 (IRAS18265–1517), проведенные на международном 30-м радиотелескопе (IRAM) в семи полосах частот в диапазонах длин волн 1 мм, 2 мм и 3 мм.

По результатам обработки в программе CLASS (Continuum and Line Analysis Singledish Software, входит в программный пакет GILDAS, разработанного в IRAM для анализа спектральных наблюдений на одиночных телескопах

(https://www.iram.fr/IRAMFR/GILDAS/) и при помощи самостоятельно написанной автором на языке C++ программы RCP были рассчитаны лучевые концентрации всех обнаруженных соединений (24 молекулы). Для нескольких из них (CH₃OH – метанол, CH₃CN – метилцианид, CH₃OCH₃ - диметилэфир) дополнительно были построены вращательные диаграммы, которые позволили точнее определить температуру спокойного «тёплого» газа в значение лучевых концентраций этих молекул и уточнить физические параметры в исследуемом источнике.

Наиболее богатый молекулярный состав зафиксирован в направлении -4'', +20'' относительно координат IRAS18265–1517 (RA(2000) = 18:29:24.8, DEC(2000)= -15:15:49.0). Здесь обнаружены линии 21-ой молекулы. Данное направление соответствует пику излучения на длине волны 800 мкм. Излучение 19 молекул найдено в направлениях -10'', +15'' и -8'', -15''. Согласно более ранним работам, именно в этих трёх направлениях находится наиболее горячий газ.

Для метанола вращательные диаграммы строились для трёх серий линий на частотах 145, 157 и 241 ГГц в двенадцати направлениях. Анализируя полученные при помощи вращательных диаграмм данные, для этих направлений были определены вращательная температура метанола, кинетическая температура газа, его плотность, а также обилие метанола.

Поскольку энергия основного электронного уровня Е-метанола несколько выше, чем у А-метанола, его, как правило, образуется несколько меньше ([E]/[A] ~ 0.7). Мы пытались оценить величину [E]/[A] в L379 IRS1 при помощи программы RADEX (часть Лейденской атомной и молекулярной базы данных LAMDA (<u>https://home.strw.leidenuniv.nl/~moldata/radex.html</u>) методом большого градиента скорости.

Согласно нашим наблюдениям, в направлении -20^{''}, +38^{''} эта величина составила [E]/[A] ~ 1 для переходов 5_K – 4_K и 3_K – 2_K на частотах 241 ГГц и 145 ГГц, соответственно. Превышение указанного соотношения можно объяснить погрешностями наблюдений (недостаточностью спектрального разрешения) при рассмотрении линий переходов 3₀-2₀A⁺ и 3₋₁-2₋₁E, однако данный вопрос нужно исследовать детальнее.

Метилцианид является одним из основных инструментов поиска горячих ядер, поскольку вокруг молодых протозвёзд его содержание повышается за счёт различных

реакций (испарение с мантий пылинок и т.д.), проходящих при высоких температурах (>100 К). Вращательные диаграммы, построенные по линиям метилцианида, показали, что вращательная температура спокойного газа меняется в пределах 43-55 К, что соответствует температуре, определённой по линиям метанола. Это значение совпадает с результатами более ранних работ. Очевидно, что узкие линии метилцианида отслеживают тот же газ, что и линии метанола. Компонент, ответственный за широкие линии, которые наблюдались в переходах 8₆-7₆ и 8₇-7₇, должен иметь более высокую температуру, чтобы возбуждать такие уровни. Нами обнаружено излучение для одной из этих линий в направлениях 0'', +30'' и -4'', +20'' и для обеих линий в направлениях 0'', -15'' и -8'', -15''. Это является свидетельством того, что в данных направлениях могут присутствовать компактные горячие ядра.

Существование горячего газа подтверждает наличие в спектрах линий молекул, возникающих в горячих областях (например, CH₃OCH₃ - диметилэфир), мазерного излучения на молекулах воды (см., например, Пащенко и др. 1994, Пащенко и др. 2005) и метанольных мазеров II класса на частоте 6.7 ГГц (Walsh et al. 1998).

В спектрах обнаружены бленды линий излучения диметилэфира по направлениям -8'', -15'' и -4'', +20''. Для каждого из этих направлений была построена вращательная диаграмма, по которым была определена температура газа 44 К и 33 К, соответственно. Такая низкая вращательная температура может объясняться как вкладом в излучение от спокойного газа, так и тем, что кинетическая температура газа может быть значительно выше вращательной.

Анализ химического состава, лучевых концентраций $C^{18}O$ и обнаруженных в L379IRS1 молекул показывает хорошее совпадение со значениями, полученными при более раннем исследовании другой области - DR21(OH), за исключением молекулы двуокиси серы. В L379 IRS1 её концентрация значительно (~ 20 раз) ниже, чем в DR21(OH). В то же время концентрация других серосодержащих молекул (напр. CS, OCS и т.д.) отличается всего вдвое, то есть источник L379 IRS1 может быть химически моложе, чем DR21(OH), и его возраст составляет <10⁵ лет.

Глава II. NGC 2071 (IRS1) в проекте Радиоастрон: Пространственное распределение мазерных пятен H₂O.

Область звездообразования NGC 2071 в созвездии Ориона была одной из главных целей исследования межзвездных мазеров H₂O в рамках международной космической миссии «РадиоАстрон» (http://www.asc.rssi.ru/radioastron/ index.html). Она содержит два скопления вокруг молодых источников NGC 2071 IRS 1 (более развитый) и NGC 2071 IRS 3 (менее развитый), которые ранее наблюдались на частоте 22 ГГц в радиоконтинууме и в излучении вращательного перехода между уровнями (6_{1,6} - 5_{2,3}) молекулы H₂O. Мазеры на молекулах воды, радиоджеты, крупномасштабные исходящие потоки и компактный протозвездный диск прослеживаются в обоих источниках (см., например, Trinidad et al. 2009, ApJ 706, 244 и ссылки в этой работе).

70 -минутный сеанс наблюдений проводился 11 января 2014 года с использованием 10-метрового космического радиотелескопа (SRT) и в качестве наземной сети 64метрового радиотелескопа в г. Калязин (Московская область, Россия), 32-метрового радиотелескопа в г. Торунь (Польша) и 32-м радиотелескопа в г. Медичина (Италия). Наблюдения проводились на частоте мазера H₂O 22.2280 ГГц с шириной полосы записи 16 МГц (~ 215 км/с). Данные обрабатывались программным коррелятором в Астрокосмическом центре Физического института им. Лебедева (АКЦ ФИАН, Москва, Россия) с использованием специализированной программы LineViewer в полосе из 2048 каналов, что обеспечило разрешение по частоте 7.81 кГц (т.е. 0,11 км с⁻¹). Синтезированная диаграмма наземной сети составляла (0.006 х 0.0006) угловых секунд. Координаты источника NGC 2071 IRS1 RA (2000) = 0^h47^m04^s.758, DEC (2000) = 00°21'42''.700 были использованы в качестве фазового центра. Корреляция в рассмотренных наблюдениях была обнаружена на всех проекциях баз. Анализ структуры источника, наблюдаемой с помощью наземной сети (калибровка и визуализация), выполнялся с помощью стандартных задач AIPS (http://www.aips.nrao.edu) и программы CLASS, которая использовалась для annpokcumaции профиля спектральной линии функцией Гаусса (http://www.iram.fr/~gildas/dist/index.html). Амплитудно-калиброванные авто- и кросскорреляционные спектры, были получены с помощью задачи ANTAB (по данным о температурах системы антенн, предоставленных обсерваториями). Фазовая калибровка была выполнена при помощи задачи FRING относительно одной из самых ярких и наиболее удаленных от центральной части спектра детали на скорости 20.5 км с⁻¹. Изображения были получены для 13 мазерных пятен в 6 деталях кросскорреляционного спектра.

Для обнаружения сверхкомпактных структур со сверхвысоким угловым разрешением, обеспечиваемым наземно-космической проекцией баз, коррелированные данные были проанализированы также с использованием программного пакета PIMA (http://astrogeo.org/pima/). Слабая корреляция была обнаружена на проекции базы 2.9 ED между радиотелескопами SRT-Медичина и SRT-Торунь только для одной детали на V_{LSR} = 14.3 км с⁻¹.

Анализируя поведение зависимости величины амплитуды функции видности от величины проекции базы для этого мазерного пятна на $V_{LSR} = 14.3$ км / с, было показано, что наилучшее приближение достигается в двухкомпонентной модели, состоящей из протяжённого и компактного компонентов мазерного излучения. Получены оценки размеров этих компонентов, соответственно: 1.56 а.е. (что сопоставимо с размером орбиты Земли) с погрешностью 30% и 0.023 а.е. (приблизительно размер звезды) с погрешностью 50 %. Столь большая ошибка в определении размера компактного компонента объясняется малым временем наблюдения и отсутствием промежуточных баз.

Параметры и результаты обработки представлены в виде спектров, карт и суммированы в таблице.

Глава III. Программа «LineViewer»: Программа LineViewer пакета astro space locator (ASL) для построения и обработки усреднённых спектров

Представлена работа экспресс-программы «LineViewer», ориентированной на первичную обработку спектров галактических и внегалактических мазеров и визуализации данных наблюдений, полученных с участием космического радиотелескопа SRT-10 (проект «Радиоастрон»). Программа создана в рамках специального пакета ASL («Astro Space Locator») в числе подпрограмм, разработанных в АКЦ ФИАН с целью организации наиболее оптимальной работы собственного коррелятора, обслуживающего проект.

LineViewer написана на языке C++ и предназначена:

1) для корректировки полосы пропускания сигнала,

2) для построения и анализа усреднённых по времени и частоте интерференции спектров мазерных источников.

3) отождествления мазерных спектральных линий и поиска корреляции сигналов.

Необходимость корректировки полосы связана с тем, что в процессе корреляции именно мазерных наблюдений для ускорения процесса обработки важно иметь информацию о том, какую часть полосы следует коррелировать. Поскольку корреляционный отклик даёт только та часть полосы, которая содержит мазерные линии, уширение полосы «шумовыми» данными ухудшает корреляционный отклик, что критично для наблюдений с низким соотношением «сигнал / шум» и характерно для 10-м орбитального радиотелескопа. Поиск «корреляционного лепестка» в мазерных данных значительно упрощается при выборе нужного участка полосы наблюдений. Для ускорения работы необходимо, чтобы соответствующая процедура проводилась быстро и наглядно, в

удобном графическом интерфейсе с использованием непосредственного визуального анализа корректности проведения этой процедуры в интерактивном режиме.

Корректировка формы полосы в рамках разработанной программы может производиться различными способами, например, при помощи шумового спектра или полинома заданной степени в указанном диапазоне частот. Для улучшения возможностей в отождествлении спектральных линий дополнительно выполняется нормировка спектра, аппроксимация спектральных линий суммой функций Гаусса в количестве не более указанного максимального числа компонентов и расчёт скоростей спектральных линий на луче зрения V_{LSR} с точностью не хуже 60 м/сек.

Для анализа усреднённых спектров, т.е. скалярного и векторного усреднения спектров по частоте интерференции или времени «LineViewer» предоставляет возможность производить поиск интерференционного отклика на двумерной диаграмме «Fringe Rate - Frequency» («Частота интерференции - частота») как визуально, так и программными методами. Можно выбрать на этой диаграмме область, для которой будет построен усреднённый авто- или кросскорреляционный спектр для дальнейшего анализа.

Важным достоинством и очевидным успехом использования данной программы стало существенное сокращение количества промежуточных циклов запуска коррелятора, что обеспечило более быстрый доступ пользователей к анализу астрофизических результатов. Она была успешно применена на практике при обработке сеансов наблюдений в рамках проекта «Радиоастрон» на корреляторе АКЦ ФИАН, в ходе которой для ряда мазерных сеансов с ее помощью визуально оценивалось качество поправок, определялось соотношение «сигнал / шум», фаза сигнала (т.е. присутствие корреляции), и была найдена корреляция как на наземных, так и на наземно-космических базах. Соответствующие примеры демонстрируются в тексте диссертации.

В Заключении суммируются результаты работы, основные положения, которые выносятся на защиту, и формулируются перспективные направления для дальнейших исследований.

Литература:

[1] Walmsley M.

"Physical and Chemical Parameters in Dense Cores. Fragmentation of Molecular Clouds and Star Formation".

Vol. 147 of IAU Symposium, 1991, P. 161.

[2] R. Cesaroni, E. Churchwell, P. Hofner et al."Hot ammonia towards compact HII regions".Astronomy and Astrophysics, 1994, 9, Vol. 288, Pp. 903--920.

[3] Kurtz S. E.

"Astrophysical Plasmas: Codes, Models, and Observations". Revista Mexicana de Astronomia y Astrofisica Conference Series. Vol. 9 of Revista Mexicana de Astronomia y Astrofisica Conference Series, 2000, Pp. 166--169.

[4] Shu Frank H., Adams Fred C., Lizano Susana"Star formation in molecular clouds: observation and theory".Annual Review of Astron and Astrophys, 1987, Vol. 25, Pp. 23--81.

[5] Bergin Edwin A., Tafalla Mario
"Cold Dark Clouds: The Initial conditions for Star Formation".
Annual Review of Astron and Astrophys, 2007, 9, Vol. 45, №1, Pp. 339--396.

[6] McKee Christopher F., Ostriker Eve C."Theory of Star Formation".Annual Review of Astron and Astrophys, 2007, 9, Vol. 45, no. 1, Pp. 565--687.

[7] Zinnecker Hans, Yorke Harold W. Toward"Understanding Massive Star Formation".Annual Review of Astron and Astrophys, 2007, 9, Vol. 45, no. 1, Pp. 481--563.

[8] Bachiller Rafael"Bipolar Molecular Outflows from Young Stars and Protostars".Annual Review of Astron and Astrophys, 1996, 1, Vol. 34, Pp. 111--154.

[9] G. Duvert, S. Guilloteau, F. Ménard et al. "A search for extended disks around weak-lined T Tauri stars". Astronomy and Astrophysics, 2000, 3, Vol. 355, Pp. 165--170.

[10] Evans, Neal J., Michael M. Dunham, Jes K. Jórgensen et al."The Spitzer c2d Legacy Results: Star-Formation Rates and Efficiencies; Evolution and Lifetimes II".Astrophysical Journal, Supplement, 2009, 4, Vol. 181, no. 2, Pp. 321--350.

[11] T. Alonso-Albi, A. Fuente, R. Bachiller et al."Circumstellar disks around Herbig Be stars".Astronomy and Astrophysics, 2009, 4, Vol. 497, no. 1, Pp. 117--136.

[12] N. Crimier, C. Ceccarelli, T. Alonso-Albi et al. "Physical structure of the envelopes of intermediate-mass protostars". Astronomy and Astrophysics, 2010, 1, Vol. 516, P. A102.

[13] H. M. de Villiers, A. Chrysostomou, M. A. Thompson et al. "Methanol maser associated outflows: detection statistics and properties". Monthly Notices of the RAS, 2014, 10, Vol. 444, no. 1, Pp. 566--585.

[14] Kurtz Stan.

"Hypercompact HII regions // Massive Star Birth: A Crossroads of Astrophysics". Vol. 227 of IAU Symposium, Ed. by R. Cesaroni, M. Felli, E. Churchwell, M. Walmsley, 2005, 1, Pp. 111--119.

[15] Kurtz Stan."The Young Massive Star Environment".Astrochemistry: Recent Successes and Current Challenges Ed. by Dariusz C. Lis, Geoffrey A. Blake, Eric Herbst, Vol. 231, 2005, 8, Pp. 47--56.

[16] Megan Reiter, Yancy L. Shirley, Jingwen Wu et al."The Physical Properties of High-mass Star-forming Clumps: A Systematic Comparison of Molecular Tracers".Astrophysical Journal, Supplement, 2011, 7, Vol. 195, no. 1, P. 1.

[17] John Bally, Nathaniel Cunningham, Nickolas Moeckel, Nathan Smith. "Nearby regions of massive star formation". Massive Star Birth: A Crossroads of Astrophysics Ed. by R. Cesaroni, M. Felli, E. Churchwell, M. Walmsley, Vol. 227 of IAU Symposium, 2005, 1, Pp. 12--22.

[18] Shepherd Debra."Massive star outflows".Massive Star Birth: A Crossroads of Astrophysics Ed. by R. Cesaroni, M. Felli, E. Churchwell, M. Walmsley, Vol. 227 of IAU Symposium, 2005, 1, Pp. 237--246.

[19] Palla Francesco.

"Stellar evolution before the ZAMS".

Massive Star Birth: A Crossroads of Astrophysics Ed. by R. Cesaroni, M. Felli, E. Churchwell, M. Walmsley, Vol. 227 of IAU Symposium, 2005, 1, Pp. 196--205.

[20] Kim Kee-Tae, Kurtz S. E. "Occurrence Frequency of CO Outflows in Massive Protostellar Candidates". Astrophysical Journal, 2006, 6, Vol. 643, no. 2, Pp. 978--984.

[21] Andre P., Ward-Thompson D., Barsony M."From Prestellar Cores to Protostars: the Initial Conditions of Star Formation".Protostars and Planets IV / Ed. by V. Mannings, A. P. Boss, S. S. Russell, 2000, 5, P. 59.

[22] Kurtz S."Hot, Warm, and Cold Cores: Goldilocks Meets Massive Star Formation".Journal of Korean Astronomical Society, 2004, 12, Vol. 37, no. 4, Pp. 265--268.

[23] Cesaroni Riccardo.

"Hot molecular cores".

Massive Star Birth: A Crossroads of Astrophysics Ed. by R. Cesaroni, M. Felli, E. Churchwell, M. Walmsley, Vol. 227 of IAU Symposium, 2005, 1, Pp. 59--69.

[24] S. P. Ellingsen, M. A. Voronkov, D. M. Cragg et al."Investigating high-mass star formation through maser surveys".Astrophysical Masers and their Environments Ed. by Jessica M. Chapman, Willem A. Baan, Vol. 242 of IAU Symposium, 2007, 3, Pp. 213--217.

[25] S. P. Ellingsen, S. L. Breen, M. A. Voronkov et al. "An Evolutionary Timeline for High-mass Star Formation". arxiv, 2012.

[26] Breen Shari L., Ellingsen Simon P."Masers as evolutionary tracers of high-mass star formation".Proceedings of the International Astronomical Union, 2012, Vol. 8, no. S287, P. 156–160.

[27] Варшалович Д. А. Советская энциклопедия, 2е изд, 1986, Vol. 113, Pp. 376--378.

[28] R. Cesaroni, F. Palagi, M. Felli et al. "A catalogue of H_2O maser sources north of delta = -30". Astronomy and Astrophysics, Supplement, 1988, 12, Vol. 76, Pp. 445--458.

[29] Argon A. L., Reid M. J., Menten Karl M. "Interstellar Hydroxyl Masers in the Galaxy. I. The VLA Survey". Astrophysical Journal, Supplement, 2000, 7, Vol. 129, no. 1, Pp. 159--227.

[30] Kurtz Stan, Hofner Peter, Álvarez Carlos Vargas. "A Catalog of CH₃OH 7₀-6₁ A⁺ Maser Sources in Massive Star-forming Regions". Astrophysical Journal, Supplement, 2004, 11, Vol. 155, no. 1, Pp. 149--165.

[31] V. I. Slysh, S. V. Kalenskii, I. E. Valtts, R. Otrupcek. "The Parkes Survey of Methanol Masers at 44.07-GHz". Monthly Notices of the RAS, 1994, 5, Vol. 268, P. 464.

[32] Menten Karl M. "The Discovery of a New, Very Strong, and Widespread Interstellar Methanol Maser Line". Astrophysical Journal, Letters, 1991, 10, Vol. 380, P. L75.

[33] Hollenbach David, Elitzur Moshe, McKee Christopher F."Interstellar H₂O Masers from J Shocks".Astrophysical Journal, 2013, 8, Vol. 773, no. 1, P. 70.

[34] K. M. Menten, M. J. Reid, P. Pratap et al. "VLBI Observations of the 6.7 GHz Methanol Masers toward W3(OH)". Astrophysical Journal, Letters, 1992, 12, Vol. 401, P. L39.

[35] Kogan L., Slysh V."VLA Imaging of Class I Methanol Masers at 7 Millimeters with Angular Resolution approximately 0.2 Arcseconds".The Astrophysical Journal, 1998, 4, Vol. 497, no. 2, Pp. 800--806.

[36] H. Beuther, A. Walsh, P. Schilke et al. "CH₃OH and H₂O masers in high-mass star-forming regions". Astronomy and Astrophysics, 2002, 7, Vol. 390, Pp. 289--298.

[37] Moore T. J. T., Cohen R. J., Mountain C. M."Mainline OH masers near young H II regions - A correlation with IRAS far-infrared flux density".Monthly Notices of the RAS, 1988, 4, Vol. 231, Pp. 887--895.

[38] V. I. Slysh, A. M. Dzura, I. E. Val'tts, E. Gerard. "A search for OH emission from IRAS sources at high galactic latitudes". Astronomy and Astrophysics, Supplement, 1994, 7, Vol. 106, Pp. 87--101.

[39] V. I. Slysh, A. M. Dzura, I. E. Val'tts, E. Gerard. "Further search for OH emission from IRAS sources". Astronomy and Astrophysics, Supplement, 1997, 7, Vol. 124, Pp. 85--108.

[40] W. Bartla, H. E. Matthews, K. M. Menten, C. M. Walmsley. "Detection of strong methanol masers towards galactic H II regions". Nature, 1987, 3, Vol. 326, Pp. 49--51.

[41] Menten M. Karl.

"Methanol Masers and Submillimeter Wavelength. Water Masers in Star-Forming Regions". Astronomical Society of the Pacific Conference Series, 1991, Vol. 16, P. 119.

[42] Felli, M., Brand, J., Cesaroni, R. et al.

"Water maser variability over 20 years in a large sample of star-forming regions: the complete database*".

Astronomy and Astrophysics, 2007, Vol. 476, no. 1, Pp. 373--664.

[43] E. E. Lekht, V. A. Munitsyn, A. M. Tolmachev, V. V. Krasnov. "Cyclic activity of the H₂O maser emission towards NGC 2071". Astronomy Reports, 2011, 10, Vol. 55, no. 10, Pp. 857--866.

[44] Victor Migenes, Shinji Horiuchi, Vyacheslav I. Slysh et al.
"The VSOP Prelaunch H₂O Maser Survey. I. VLBA Observations".
The Astrophysical Journal Supplement Series, 1999, 8, Vol. 123, no. 2, Pp. 487--513.

[45] O. S. Bayandina, R. A. Burns, S. E. Kurtz et al. "VLA Overview of the Bursting H₂O Maser Source G25.65+1.05". Astrophysical Journal, 2019, 10, Vol. 884, no. 2, P. 140.

[46] N. S. Kardashev, V. V. Khartov, V. V. Abramov et al."«RadioAstron»-A telescope with a size of 300 000 km: Main parameters and first observational results".Astronomy Reports, 2013, 3, Vol. 57, no. 3, Pp. 153--194.

[47] Willem Baan, Alexey Alakoz, Tao An et al.
"H₂O MegaMasers: RadioAstron success story".
Proceedings of the International Astronomical Union, 2017, Vol. 13, no. S336, P. 422–425.

[48] M. I. Pashchenko, A. M. Le Squeren."Observations of cold IRAS sources in the 18-cm OH lines". Astronomy Letters, 1994, 1, Vol. 20, no. 1, Pp. 69--71.

[49] M. I. Pashchenko, E. E. Lekht."Masers in the Cool Molecular Cloud L 379".Astronomy Reports, 2005, 8, Vol. 49, no. 8, Pp. 624--633.

[50] A. J. Walsh, M. G. Burton, A. R. Hyland, G. Robinson.
"Studies of ultracompact H ii regions — II. High-resolution radio continuum and methanol maser survey".
Monthly Notices of the Royal Astronomical Society, 1998, 12, Vol. 301, no. 3, Pp. 640--698.

[51] Trinidad M. A., Rodrìguez T., Rodrìguez L. F."Radio Jets and Disks in the Intermediate-Mass Star-Forming Region NGC2071IR". Astrophysical Journal, 2009, 11, Vol. 706, no. 1, Pp. 244--251.